
AD-A246 597 A

NAVAL PUSTGRADUATE SCHOOL
Monterey, California

DTICQ
ECTE

FEB 2 8 199&

THESIS ...

AN OBJECT-ORIENTED APPROACH TO
COMPUTER ARCHITECTURE SIMULATION

by

Kevin A. Fontes

September 1991

4 Thesis Advisor Michel L. Nelson

Approved for public release; distribution is unlimited.

92-05010

Unclassified

SECURYrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
IL REPORTSECURITY.CLASSIFCATION lb. RES1TICTIVEMARKINGS

Unclassified
2. SECURITYCASFCAMION AUTHORITY 3. DIS'lRUTIONIAVAILABILrY OFREPORT

Approved for public release; distribution is unlinited
2b. D CATIONJDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONiTORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OFMONrI0RING ORGANIZATION
Naval Postgraduate School (if Applicable) Naval Postgraduate School1 37

6. ADDRESS (city, tae, and VJP code) 7b. ADDRESS (city. sae, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDINGSPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENTINSTRMENTDENTIFICATION NUMBER
ORGANIZATION (If Applicable)

8c. ADDRESS (ciy,sate, and VP code) 10. SOURCE OF FUNDING NUMBERS

.PROGRAM IPRONCT TASK WORK UNIT
.adI rNO. NO. NO. ACCESSION NO.

11. TIThE (Il.ude Securit C u41ion)

AN OBJECT-ORIENTED APPROACH TO COMPUTER ARCHITECTURE SIMULATION

12. PERSONAL AUHOR(S)
FONTES, Kevin Anthony

13L. TYPE OFREPORT 13b. TIMAECOVERED 14. DATE OF REPORT (year, moath~day) 115. PAGE C'UNT8Master's Thesis FROM IO 1991 September
16. SUTPFLMETARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the US. Government.

17. COSATICODES 18. SUBJECT TERMS (continue on revre if neceasary and idenify by block moiber)

FIELD GROUP SUBGOUP Computer Architecture, Object-Oriented Programming, Simulation, Modeling,
Object-Oriented Design

19. ABSTRACr (Coosuum on reven if neceuary and identfy by block mawber)
An object-oriented approach to modeling and simulating computer architectures is presented. This approach yields a generic'
class hierarchy that supports the simulation of basic computer microarchitecture components found in most computers. This is
accomplished by concentratig on the mom generic concepts of processors, memores, registers etc., rather than concentrating on
a specific system. The 'generic' class hierarchy is tested by developing microarchitecture simulators for two different
nicroarchitecture designs.

.0. DISWIBUTONIAVAIIABILI OF ABSTRAC 21. ABSIRACTSECURn'Y CLASSIFICATION

:XUNIAss~WNUMI'El []AMAS RI'I LI DTICUSER Unclassified
2L NAMEOFRESPONSIBLEINDWIDUAL 22b. TELEPHONE (Include Aa Code) 22 OFMICESYMBOL

Michael L. Nelson (408) 646-2026 CSNe
)D FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF ThIS PAGE

All other editions am obsolete Unclassified

Approved for public release; distribution is unlimited.

An Object-Oriented Approach To Computer Architecture
Simulation

by

Kevin Anthony Fontes
Lieutenant, United States Navy

B.S., California Polytechnic State University University, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1991

Author: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Kevin A. Fontes

Approved by:

MichaefL. Nelson, Thesis Advisor

Robert B. McGhee, Chairman
Department of Computer Science

ii

ABSTRACT

An object-oriented approach to modeling and simulating computer architectures is

presented. This approach yields a 'generic'- class hierarchy that supports the simulation of

basic computer microarchitecture components found in most computers. This is

accomplished by concentrating on the more generic concepts of processors, memories,

registers etc., rather than concentrating on a specific system. The 'generic' class hierarchy

is tested by developing microarchitecture simulators for two different microarchitecture

designs.

laqesston For
NTIS cA&j

DTIC 2, 0

BY_

Av rl JIi'

Di1st Spoccal

InI

TABLE OF CONTENTS

INTRODUCTION ... 1

A. OBJECT-ORIENTED PROGRAMMING 2

1. Object-orientedprogramming terminology.................................... 2

2. Prograph .. 4

B. COMPUTER ARCHITECTURE .. 12

1. Computer Microarchitectut ... 12

2. Simulation of Computer Architectures 18

C. OVERVIEW .. 19

II. REVIEW OF THE LXTERATURE ... 20

A. SIMULATION OF COMPUTER ARCHrECTURES 20

B. OBJECT-ORIENTED DESIGN ... 24

C. CONCLUSIONS ... 26

I. SOLUTION .. 27

A. DESIGNING A 'GENERIC' MICROARCHITECTURE CLASS

HIERARCHY .. 27

1. Identification of the Objects and Classes 28

a. Initial definition of the objects and classes 28

b. Analysis Of The Object's Variables 30

c. Analysis of the Object's Methods 31

2. Refinement of the Objects and Classes 31

a. Addition of Necessary Information 31

b. Elimination of Redundant Information 33

c. Determination of Class and Instance Variables 33

iv

d. Identification of Cotriposite Objects 33

3. Organization of The Classes Into a Hierarchy 33

a. Analysis of the Implementation Language 33

b. Construction of the Hierarchies 34

c. Review of the classes' variables/methods 37

B. IMPLEMENTATION OF TANENBAUM'S MICROARCHITECTURE 37

1. Operation of the Tanenbaum Microarchitecture 38

2. Design of The Class Hierarchy .. 41

a. Review and Modification of the General Class Hierarchy 42

3. Design of the Micro Simulator .. 43

a. The user interface .. 43

b. Micro Simulator Program Structure 48

C. IMPLEMENTATION OF A SIMPLE COMPUTER (ASC) 50

1 Operation of the ASC Microarchitecture 50

2. Design of The Class Hierarchy .. 55

a. Review and Modification of the General Class Hierarchy 55

3. Design of the ASC Simulator .. 57

a. The user interface .. 57

b. ASC Simulator Program Structure 59

D. COMPARISON OF THE TWO SIMULATORS 60

E. SUMMARY .. 64

IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH ... 65

A. SUMMARY .. 65

B. CONCLUSIONS ... 66

v

C. RECOMMENDATIONS FOR FUTURE RESEARCH67

APPENDIX A .. 70

APPENDIX B .. 73

APPENDIX C .. 83

APPENDIX D ... 133

LIST OFREFERENCES... 195

INITIAL DISTRIUTION LIST.. 197

vii

LIST OF FIGURES

Figure 1.1 Example of Class Hierarchy and Class Attributes 5

Figure 1.2 Example of Class and Instance Attributes 6

Figure 1.3 Inherited Attributes ... 6

Figure 1.4 An Example of a Method Window .. 7

Figure 1.5 An Example of a Case Window .. 8

Figure 1.6 An Example of a Local Operator Window 9

Figure 1.7 Message Passing ... 10

Figure 1.8 Multiplexes, Persistents and Program Control 11

Figure 1.9 Data Path (Tanenbaum, 1984, p.127) 16

Figure 1.10 Example Microarchitecture (Tanenbaumbaum, 1984, p. 132) 17

Figure 2.1 Class Definition ... 26

Figure 3.1 'Generic' Class Hierarchy ... 35

Figure 3.2 Tanenbaum's Microarchitecture (Tanenbaum, 1984, p. 132) 38

Figure 3.3 Microarchitecture Register Uses .. 39

Figure 3.4 COND Code Definitions ... 41

Figure 3.5 Micro Simulator's Menu Bar .. 44

Figure 3.6 Sample Object Program Text Format 44

Figure 3.7 The Define Memory Dialog Box .. 46

Figure 3.8 The Micro Simulator Window ... 47

Figure 3.9 Cycle Universal Method ... 49

Figure 3.10 Micro Simulator's Persistents .. 50

Figure 3.11 ASC Microarchitecture Block Diagram (Shiva, 1991, p.229) 51

Figure 3.12 ASC Instruction Format .. 53

vii

Figure 3.13 Block Diagram of ASC M icrocontrol Hardware54

Figure 3.14 ASC Simulator's Menu Bar ... 57

Figure 3.15 The Define Memory Dialog Box (ASC) 58

Figure 3.16 The ASC Simulator Window .. 59

viii

ACKNOWLEDGEMENTS

I would like to thank MAJ Nelson for his thoughtful suggestions and help. Also

Amr Zaky for his helpful suggestions. Thanks are also in order for Lou Stevens who was

able to locate an appropriate microarchitecture design to simualte in this thesis. Also thanks

go out to two TGS programmers, Lynn McKaig and Mark Szpakowski for their help with

Prograph coding questions.

I would also like to thank my wife, Rebecca for her proof reading and support.

ix

I. INTRODUCTION

Designing a new computer architecture is a complex process. This process produces

a complicated device, composed of many interdependent components. Since the final

product is a piece of hardware, it is expensive and time-consuming to design, test, alter,

and then re-test the various components.

It is difficult to directly measure the performance of new hardware as it is being

designed. Performance parameters include items such as how many memory accesses

occur and how many times the registers exchange data in a given time period for a given

program. In order to measure these parameters directly, costly monitoring equipment must

be connected directly to the hardware. The problems of monitoring and testing become

even more pronounced when evaluating Very Large Scale Integration (VLSI) Hardware, as

it may be impossible to connect external monitoring equipment to some of the internal

components. It is also important to test the effects that each component has on all others.

These effects can be both electronic and logical; only the logical effects are addressed in

this thesis.

One solution to the problem of component testing and hardware evaluation is to

simulate the new hardware in software. This allows separate testing of individual

components as well as testing of the complete system. A complete simulation

environment should model the architecture as closely as possible, yet remain as general as

possible. Reusability is the main attraction of using simulation for hardware and system

design.

The majority of computer architecture simulations in the past have been implemented

using conventional programming languages and techniques. This thesis examines the

advantages of implementing computer architecture simulation using an object-oriented (00)

approach. Encapsulation of methods and variables facilitates the reusability of code,

inheritance and composition allow the building of more complex components and systems.

Two computer architectures have been simulated using Prograph1 (Cox and Pietrzykowski,

1989), an object-oriented programming (OOP) language, as part of this thesis.

A. OBJECT-ORIENTED PROGRAMMING

1. Object-oriented programming terminology

It is assumed that the reader has at least some familiarity with object-oriented

programming concepts. This section provides a brief introduction to object-oriented

programming and terminology as applied in this thesis.

Object-oriented programming may be summarized by the following equation:

"object-oriented = objects + classes + inheritance" (Wegner, 1987, p.168)

The backbone of an object-oriented programming language is the object.

Objects are autonomous entities that respond to messages (operations) and have a state. An

object's state is defined by its variables (attributes), and its operations are defined via its

methods (procedures). An object's state can only be manipulated by its methods.

Therefore, to change an object's state from the outside, a message must be sent to the

object telling it which method to invoke2.

A class is a template from which objects may be created (Wegner, 1987,

p.16 8). An object is an instance of a class. The variables making up an object's state can

be divided into class variables and instance variables. A class variable is defined as a

variable that has the same value for all instances of a particular class. An instance variable

is one that has a unique value for each instance of a class.

lPrograph is a trademark of The Gunakara Sun Systems, Ltd (TSSystems).
2This assumes an encapsulated approach; although most OOP languages support this idea, not all enforce
it.

2

For example, a class Person could be defined which has the instance variables

name (the unique identifier of this object), and where (the current location of the object),

and a class variable People (a list of names of all the instances of this class) 3. Three

instances of class Person are:

(name: canniball,where: left, People: (caniball, canibal2, missionaryl))

(name: cannibal2, where: right, People: (caniball, canibal2, missionary 1))

(name: missioinaryl, where: left, People: (caniball, canibal2, missionary 1))

Even though these instances of Person each have a different state, they all share the same

operations, (e.g., walk, sleep, etc.), because they are all instances of the same class.

Inheritance allows the creation of classes of objects that are almost like another

class of objects with a few incremental changes (Stefik & Bobrow, 1986, p.4 0). This

results in a formal code sharing mechanism. A subclass inherits all of the variables ani

methods defined for its superclass. A simple example of inheritance is when the class

person (instance variables: name, where; class variable; people methods: walk, sleep)

is inherited by class Cannibal. Thus Person is the superclass and Cannibal is the

subclass. The subclass Cannibal inherits all of the variables and methods of Person

(i.e., the code is shared); the user may also add other variables and methods in defining the

subclass Cannibal. The inheritance hierarchy can be many levels deep and complex.

Single Inheritance is when a class can have only one superclass (usually referred to simply

as inheritance). Multiple inheritance occurs when a class can have several superclasses.

A composite object (or aggregate object) is an object that contains other objects.
That is, its variables may themselves be instances of other classes. For example, an

airplane object can be defined as containing the objects wings, propeller, wheels, etc; the

wing object contains flaps, covering, cables, etc.

3This example is taken from a classroom project involving the implementation of the missionaries and
cannibals problem (CS 4114, Winter, 1990).

3

An abstract class is a class which does not have any instances (Nelson, 1990,

p.6)4 , while a concrete class is one which does have instances. For example, if the class

Missionary and the class Cannibal are both subclasses of the class Person and no

instances of Person are allowed, then the class Person would be an abstract class.

However, both the subclasses inherit all of the variables and methods defined for the class

Person. If the classes Missionary and Cannibal do have instances, then they are

concrete.

Object-oriented programming also supports encapsulation. Encapsulation is the

strict enforcement of information-hiding (Micallef, 1988, p.1 3). Encapsulation refers to an

object's ability to hide implementation details behind the object interface (i.e., the

operations/methods defined for the object's class). When a message is sent to an object,

the object performs a method which may manipulate one or more of the object's variables

without the message sender being concerned with how (or even if) those variables are

manipulated.

2. Prograph

All programs implemented in this thesis use the Prograph programming

environment on the Macintosh5 computer. Prograph is a pictorial, object-oriented dataflow

language (Cox and Pietrzykowsid, 1989, p.1). This environment was chosen because it is

pictorial in nature, it easily describes class hierarchies and variables, and it is easy to use.

The following discussion is not intended to be a tutorial in Prograph programming, but

rather to introduce the terminology and principles of Prograph.

A simple class hierarchy represented in the Prograph environment is presented

in Figure 1.1. There are three classes: Person, Missionary and Cannibal; each one

4 Abstract classes are not enforced by Prograph, or by any OOPL that we know of (i.e., it is only a
concept).
5Macintosh is a trademark of Apple Computer, Inc.

4

depicted by a hexagonal shaped icon in the classes window. The icon is divided in half; the

left half represents the class and instance variables and the right half represents the methods

associated with the class. To open the associated window the user 'double-clicks' on the

desired half of the icon. The links between class Person and the classes Missionary and

Cannibal indicate that Person is a superclass of the classes Missionary and

Cannibal.

{3 Classes

Persom

Missionary Cannibal

Figure 1.1 Example of Class Hierarchy and Class Attributes

The attributes window of the class Person is presented in Figure 1.2. In

Prograph a class variable is referred to as a class attribute, and an instance variable is called

an instance attribute. An attribute window is denoted by the inverted triangle next to the

window name. The class person, in Figure 1.2 has two instance attributes (name &

where) and one class attribute (People). Those attributes above the horizontal line

represent class attributes and the attributes below the line represent instance attributes. A

class attribute is represented by a small hexagonal icon similar to the class icon and an

instance attribute is represented by an inverted triangle.

5

V Person
("CannI" "M...

0
People

"Citizen X"V
name

"LeftBank"

V
vhere

Figure 1.2 Example of Class and Instance Attributes

An example of inherited attributes is presented in Figure 1.3. An inherited

attribute is represented by the normal attribute icon with a small downward pointing arrow.

Therefore, the attributes People, name, and where are inherited from class Person.

The attribute level is defined in the class Cannibal.

V Cannibal

People
"Citizen X"

Dam*
"LeftBank"

where

level

Figure 1.3 Inherited Attributes

6

A class' methods are represented in the method window as shown in Figure

1.4. The icon with a small dataflow diagram inside it next to the window name indicates

that it is a method window. The six icons inside of the window depict six different

methods defined for the class Person. Double-clicking on a method icon will open the

associated methods case window.

Person

GetOmeoat GetOnLoftBank GetOnRightBank

Battle? Cuter Move

Figure 1.4 An Example of a Method Window

A case window opened from a method icon is presented in Figure 1.5

(descriptive comments are in bold type outside of the window). The window title is

composed of the class name and the method name. In the example the case window shows

the method make from the class Cannibal. All case windows have input bars and output

bars. These bars are used to pass data into and out of the method. The numbers 1:1 in the

window title indicate that this is the first case window of one case(s). When there are

multiple cases of a method, all cases must have have the same number of inputs (terminals)

and outputs (roots) on the input and output bars. The number of terminals or roots is

defined as arity. Since Prograph is a dataflow language, the data flows from the top to the

bottom of the case window, following the datalinks.

7

Cannibal/make 1:1 Input Bar
Instance%

GeneratorDatalk

Root] anibalTerminals

Set Operations

Local Operato dato Class Attribute
Camribal Ihstanoe

Output Bar

Figure 1.5 An Exaiple of a Case Window

The shape of the icon indicates what type of operation will be performed and the

name inside of the icon determines which class, attribute, or method is executed. The icon

with convex left and right sides (the top leftmost operation, containing the word

Cannibal) of Figure 1.5 is a instance generator. This generator is used to make an

instance of the class Cannibal. The two operations with convex left sides below the

Cannibal instance generator, are set operations. The set operation is used to set the value

of an instance or class attribute. The text inside the icon determines which attribute will be

set. The left terminal is used to pass the particular instance to be operated on, and the right

terminal is used to input the value the instances attribute is to be set to.

The Update Class Attribute operation in Figure 1.5 is a Local Operator.

Local operators are used to reduce the clutter in a case window, and are defined by the

programmer. The operations inside of the local operator icon are still logically inside of the

case window in which it resides; they are just grouped together in an attempt to make the

8

window more readable. Figure 1.6 shows the contents of the local operator Update

Class Attribute from the Cannibal/make window. Notice that the arity of this

window is exactly the same as the arity in the associated local operator icon in the

Cannibal/make case window.

Update Class Attribute

Cannibal Instano.00 1.

-chttaoh-Ir

** 1*

Cannibal knstanc.

Figure 1.6 An Example Of a Local Operator Window

The first operation labeled People (concave left side) in Figure 1.6 is a get

operation. This get operation takes a Cannibal instance as input and gets the value of the

People class attribute. The operation in Figure 1.6 labeled attach-r is an example of a

primitive operation. Primitive operations are supplied by the Prograph programing

environment, and are represented by an icon with a horizontal line near the base of the icon.

In this case the instance of Cannibal coming into the window is added to the People

class attribute (which is a list) with the attach-r primitive. The People set operation

(convex left side) simply indicates that the value of the People class attribute has been set

to the value returned by the attach-r operation.

There are several ways of calling a message to invoke a desired method in

Prograph. Figure 1.7 gives three examples of the various representations of message

9

calling. The text inside the operation boxes represents the message being sent. The

terminals above the box are the data passed to the method, and the root leaving the box is

the result of invoking the method. Regardless of the form of message passing, if the

method is not found the environment searches for a method higher up in the inheritance

tree. Operation A is an example of an explicit reference. This message tells the class

Cannibal to invoke the make method. Operation B is an example of a data-determined

reference. The message will invoke the method make from the class that matches the

instance presented at the left input terminal. Operation C is an example of a context-

determined reference. This type of message will invoke the method make from the class

that matches the case window in which the operation resides.

M' 4On/m bakAe' mae Mk'

A. B. C.

Figure 1.7 Message Passing

Progaph has two ways to handle persistent6 data. Class attributes are used to

store persistent data that is related to a specific class. This data can only be accessed via an

instance of that class. Persistents are used to store persistent data that is not class specific.

These persistents can be accessed globally. An example of the use of a persistent is

presented in Figure 1.8. The persistent is represented by an oval icon (Total in Figure

1.8). Referring to Figure 1.8, the top persistent (with the root) is being read, and the

persistent on the bottom (with the terminal) is being written to. Since Prograph is a

dataflow language, program flow follows the datalinks. Using Figure 1.8, the fir-st

persistent Total is read, then the data is used and manipulated in the present? operation,

6Prgraph uss t term puistint to decribe data which is not part of a speCific objec

10

followed by the results being stored back into the Total persistent. There is only one

Total persistent, but it can be read and written as often as the programer specifies.

Cannibal/multi 1:1

@1.1,

TRUE X

Figure 1.8 Multiplexes, Persistents and Program Control

Program flow control, an important aspect of any language, is implemented

using case control. As previously mentioned, a case window can have multiple windows.

When a case has multiple windows there must be a method to control which window will

be accessed. When Prograph calls a method containing multiple case windows, it will

always start execution at the first case window of the series by default. If the case window

has any case control it will check that control firsL Figure 1.8 also presents an example of

a typical case control. The box (labeled X) in the upper right of the window is a simple

case control. The X indicates that if the data that arrives at the control's terminal does not

match what is in the control's box then control will transfer to the next case window of the

series. There are other control symbols to perform the following: jump to next case if

match, and terminate this method if match/no match.

11

A multiplex is the multiple execution of a method, which is represented as an

icon that looks like a stack (i.e., several boxes, one on top of the other). The present?

operation in Figure 1.8 is an example of a multiplex. There are several ways of controlling

the number of times a particular multiplex is executed. The present? multiplex in Figure

1.8 has two multiplex operators. A method becomes a multiplex when one of the roots or

terminals is changed from a simple root/terminal to a list or loop root/terminal. The ellipses

terminal on the upper left of present? is a list terminal. This terminal will cause present?

to execute once for each element of a list presented to its list terminal. The root/terminal pair

of arrows on the right of present? is a loop multiplex. These always come in pairs. This

allows the multiplex method to pass variables from one execution of the multiplex method

to the next execution. The data is passed to the method on the first execution, the method

uses/alters this data and passes it out of the loop multiplex where it will be passed to the

input of the present multiplex method as its execution continues or it will be passed as

output upon termination.

This section has presented the most basic essentials of Prograph to give the

reader enough information to understand the Prograph programs used in this thesis. For

more information on Prograph, please see the Proeg h Reference Manual (The Gunakara

Sun Systems, 1990).

B. COMPUTER ARCHITECTURE

1. Computer Microarchitecture

The microarchitecture level of a computer is the level that directly interacts with

the actual hardware. This is the level of the computer that will be simulated in this thesis.

We chose this level because it is easy to pick real components and model them as software

objects. The components defined in this section are implemented as objects/classes in the

following chapters.

12

Most computers have several common components, including: registers,

memories, buses, arithmetic logic units (ALUs), and multiplexers (muxs). The computer's

microacrchitecture is controlled either by a microprogram or by hardwired decoding. This

thesis discusses only microarchitectures that are controlled by a microprogram. The

purpose of the microprogram is to "control the machine's registers, memories, buses,

ALUs, and other hardware components" (Tanenbaum, 1984, p.118). This section provides

a brief introduction to the microarchitecture level components of a typical computer.

All processors (often referred to as the central processing unit or CPU) contain

at least a small number of registers. Registers are located on the CPU chip and are used to

store data. A register is characterized by the number of bits of data it can hold. For

example, if a register can hold 16 bits it is referred to as a 16 bit register. The register's

short access time is due to the simple circuitry required to determine the register being

accessed (i. e., a relatively small number of logic gates), and also because the register is

contained in the CPU chip. The CPU typically has general purpose registers which are

used for storing and retrieving data encountered in instruction execution, as well as

registers which have some specific function(s), such as the program counter (PC), stack

pointer (SP), instruction register (IR), and accumulator (AC). All of the registers together

are often referred to as a register bank..

A computer's memory is similar in construction to a register bank, except that

the memory is much larger and is located some distance from the CPU (i.e., usually not on

the CPU chip itself); memory is also slower than registers. Typically, a memory bank

consists of many thousand locations. Like registers, memory is characterized by the

number of bits of data each location can hold. It is also characterized by the number of

memory locations possible. One of the reasons that memory is slower than registers is that

it has many more locations which can be accessed. The larger the number of locations to

13

access; the more digital logic required to determine the access point. The increase in the

amount of access logic increases the time delay of the signals, thus producing a time delay

for the desired data to be returned.

Data passed into memory is communicated via the Memory Buffer Register

(MBR), while the desired address of the data (location of where the data is to be stored) is

loaded into the Memory Address Register (MAR). A write control is activated causing the

value in the MBR to be stored into the desired memory location. To read a value from a

particular location in the memory the process is reversed using a read control. Thus, the

memory bank interfaces with the rest of the world via an MAR, MBR, and two control

signals.

A bus is used to transmit signals from one device to another. Physically, a bus

is a collection of wires that transmit a group of signals in parallel from one location to

another. Many devices can be physically connected to the same bus. The bus is considered

to be an inert device. That is, if data is electrically placed on one end of the bus, the

information will show up on the other end. The bus itself does not actively control the

signals; rather, the bus is controlled by the equipment connected to it. If multiple devices

attempt to transmit simultaneously, the values of each bit of the bus will be garbled and the

data will be useless. Thus, many devices can simultaneously read data from the bus, but

only one device may be transmitting at any time. Therefore, there arises a need for some

central controlling device to synchronize the control of all devices writing on the bus. This

will be discussed later.

Devices may receive inputs from several other devices/buses, but can only

process one input at a time. This gives rise to the need for a multiplexer. A md'plexer is a

device that has several data input lines and a single data output line. It also has several

control inputs that determine which data input will be selected. The output of the

14

multiplexer is connected to the input line of the device, and data selection is based on the

multiplexer control signal. A multiplexer has 2n data inputs and therefore has n control

inputs.

The heart of the computer is the Arithmetic Logic Unit (ALU). The ALU

typically has two inputs for data, one output for data, several control inputs, and several

result output indicators. The control inputs are used to select the operation(s) to be

performed on the input data. Standard ALU operations typically include: AND, OR,

NOT, and ADD. The result output indicators are simple one bit signals which indicate that

output of the ALU is negative, zero, overflow, etc. Shifters are used to shift the bits of an

input to the left or right depending on the input control signals. The shifter may be placed

at the output of an ALU, or it may be a part of the ALU itself.

This section has addressed the many components typically found in the data

path side of a microarchitecture. A typical data path taken from Tanenbaum (Tanenbaum,

1984, pp.127) is shown in Figure 1.9. It includes a bank of registers, an ALU, a shifter, a

Memory (including MBR and MAR) and an Amux (multiplexer).

15

A bus B bus

Ma
--emoPC

A Ar C u 0 ac ath---L

Write
RN

Figury 1.9- Dat Pathh laatchum 194p17

Figure ~ MA 1.Ahosdrydeiess ongwtnut signals- -Fe FFlec) n
output~ ~ ~ ~ ~ ~~~---------- sinl-NadZ-Teipu-inl r eeae ro h oto ieo h

Mb16

microarchitecture. The control side is presented along with the data path in Figure 1.10.

The control devices consist of: the Micro instruction register (MIR), the Control Store, and

the Microprogram counter (MPC).

-i

a a i

,.L ---- ----
registersMI

M L H B A

m X

r

y AM

rN

Figure 1.10 Example Microarchitecture (Tanenbaumbaum, 1984, p. 132)

The control store holds the entire microprogram, which consists of

microinstructions. When a microinstruction is read from the control store, it is placed in

the MIR. The MIR has output leads from each control field to all of the control inputs of

each device in the data path side of the machine. The sequence of microinstructions is

17

controlled by the MPC. The MPC sends its counter value to the control store, the

appropriate microinstruction is retrieved from the control store and placed into the MIR,

and then the MPC is incremented or changed depending on the output status signals of the

ALU. This process repeats as the microprogra execution continues.

This section has introduced the many devices found in a typical computer

microarchitecture. The data path consists of registers, memory, ALU, shifter, buses and

multiplexers. It is controlled by the microprogram which is implemented in the MPC,

control store, and MIR. Each microinstruction controls the entire microarchitecture's

device control inputs. It is the continuous cycling of the microprogram which controls the

fetching, decoding, and executing of higher level instructions. These components will be

seen again in Chapter I where they will be simulated as software objects.

2. Simulatio.u of Computer Architectures

Simulation of computer architecture is the use of a computer program on one

computer to model the performance of another computer. Papazoglou, et. al. says that

"Simulative modelling, like every other modelling approach, does offer the option that the

working representation of a not yet existing system is possible" (Papazoglou, Pawlak, and

Wrona, 1989, p.1). In the past, computer architectures have been modeled using classic

structured programming languages. Only recently have object-oriented languages begun to

be used. To model a specific architecture via a conventional language, a specific program

was written to model that architecture. Whenever a simulation of a new architecture was

needed, an entire new program was written to support the simulation. Papazoglou et. al.

outlines the following requirements for modeling an architecture (Papazoglou, Pawlak and

Wrona, 1989, p. 213):

* the model must have the same logical structure as the modelled computer system.

* it must comprise an integrated model of both the complete system hardware and

software.

18

• it should be able to model the different parts of the system at different levels of

abstraction.

* it should allow different sets of output statistics each time it is rerun with a new set of

input parameters, and like any well disciplined good program it is structured,

modular, reliable, efficient and extensible.

Modeling a computer architecture in an OOP language fulfills all four of these

requirements, and particularly excels with the last two.

C. OVERVIEW

Chapter II is a detailed survey of the literature pertaining to previous work completed

in the areas of computer modeling and object-oriented design. Chapter III is a detailed

discussion of the implementation of the computer programs (developed in Prograph)

simulating various computer architectures (the actual code is included in appendices C and

D). Chapter IV presents the conclusions of this research effort, along with

recommendations for future research and a summary of the thesis.

19

II. REVIEW OF THE LITERATURE

Object-oriented simulation of computer architectures is still in its infancy. The

majority of the effort is in the simulation of multiprocessor systems. Most of the simulator

systems that were reviewed have a very simple text based user interface; only one group is

working on a simulator in which the main concern is the user interface and its ease of use.

Only one group was found to be interested in hardware simulation for classroom

instruction purposes. Some groups emphasize the usefulness of the object-oriented

approach for the reuse of code.

To date, there is no system that incorporates reusable objects, has an intuitive user

interface, was developed with commercial software, and runs on a commercially available

microcomputer. Of course, a system that meets these objectives would also be economical

enough to be available for classroom use. This is because most systems are not being built

using commercially available software. This section discusses the various research in the

field of architecture simulation, with an emphasis on object-oriented approaches.

A. SIMULATION OF COMPUTER: ARCHITECTURES

A system developed at Acadia University uses a Pascal-like Register Transfer Level

Language (RTLL) that operates on microcomputers (Tomek, 1985). This system was

designed for the instruction of computer organization and architecture. They point out there

is currently very little educational software in this field. Their package allows the user to

"write descriptions of simpler CPU's, controllers and similar devices and experiment with

their operation" (Tomek, 1985, p.493). The package consists of the following modules:

RTLL description editor, RTLL simulator, Screen layout generator, Memory file generator,

System description generator, and Organization descriptor.

20

The RTLL description editor is a syntax-directed editor used to develop an RTLL

program. The RTLL simulator executes the program developed by the RTLL description

editor. The Screen layout generator "allows the user to specify the format in which the

results of the simulation are to appear on the screen" (Tomek, 1985, p.494). The memory

file generator allows manipulation and loading of the memories' contents. The system

description generator specifies CPU interfaces with other components. Finally, the

organization descriptor is used to specify the CPU organization and timing constraints.

Unfortunately they do not describe the methodology used in the development of the system

or the programming language used in its impleentation.

Object-oriented design has been applied to multimicrocomputer hardware and

software simulation in the development of the MUDS system (Papazoglou, Pawlak, and

Wrona, 1989). "MUDS constitutes an extension of the SIMULA language, and has been

designed for developing prototypes of distributed software and for appropriately simulating

the extension of these software prototypes on a model hardware" (Papazoglou, Pawlak,

and Wrona, 1989, p.215). Thus the MUDS system is used for the simulation of hardware

and software for multiprocessor computers. They introduce the design methodology used

in the development of MUDS.

The basis of MUDS rests on the development of classes used to represent hardware

and software. These classes are chosen such that "the structure of a designed

microcomputer system may be extended with an arbitrary number of instances of the

classes being modelled" (Papazoglou, Pawlak and Wrona, 1989, p.216). They emphasize

that a powerful simulator can be attained with an appropriate object-oriented language, but

it is essential that a proper implementation of object-oriented design techniques be used.

The authors also show that the advantages of an object-oriented language (data hiding,

21

abstraction, classes as templates, etc.) allow for a better representation of the

hardware/software being modeled.

Modeling of a system can occur at various levels, For example, the microarchitecture

level, macroarchitecture level, etc. The Virtural Stack Machine, a programning system for

generating and interpreting code for von-Neumann machines is an example of one such

level or several levels (Frei, 1989). A virtual stack machine (VSM) simulator is used to

perform "VLSI netlist logic design rule checks" (Frei, 1989, p.5/1). This relatively simple

architecture, modeled at the macro level, consists of three major elements: a central

processing unit, a data stack, and a direct access data memory. The instruction set for the

central processor is implemented as methods in one of the classes in the hierarchy. This

research concluded, as with other similar research, that a class library is needed for the

many objects, and that object-oriented design techniques greatly reduce the coding effort.

Nearly all hardware simulators have a very simple user interface. Only one of the

systems reviewed considered the user interface as an essential facet of the simulation

model. A simulator has been developed that is used for the writing and debugging of

microprograms for hardware under design (Sugimoto, Abe, Kuroda, and Katou, 1988).

This system was developed in a LISP-based object-oriented language, VEGAMS, which

was also developed by the authors. The user interface presents a bus and component

structure which graphically represents the actual hardware. This graphical representation

allows the simultaneous display of the bus, register, and various other components as the

simulation progresses. Having all the pertinent data available on the screen allows the

micrprogram developer to quickly realize mistakes and correct them immediately. Another

feature is the representation of data by color coding. The microprogram is displayed in an

assembly language format and an editor is provided for the system. This allows the user to

22

alter the microprogram and reenter it into the control store while remaining in a single

application.

One of the system's major features is its ability to stop at a breakpoint and roll-back

the execution to some earlier time. This allows the user to examine the state variables at

that time. The user can alter any variables and change the microprogram and continue

execution from that point. The roll-back capability is implemented by keeping a complex

linking of objects over time. Thus, to roll-back to a certain cycle number, the appropriate

pointer is referenced and its data is loaded.

Although some portions of code are hardware specific, a significant portion is

common to almost all computer architectures. It is claimed that developing simulators

using an object-oriented language lead to approximately 62% reusability of code for other

hardware simulations. As with other object-oriented applications, the design of the class

hierarchy is crucial to the extensibility of the code. (Sugimoto, Abe, Kuroda, & Katou,

1988, p.55)

Simulation efforts are not limited to only object-oriented or classical languages. The

simulation of concurrent real-time systems using the object-based language Ada has also

been investigated (Mulcare, 1990). In the design of real-time systems, "superficial design

descriptions" (Mulcare, 1990, p.184) are performed prior to attempted implementation. Of

course, this leads to problems that appear during construction of the system. A formal

design process followed by a comprehensive simulation of the system is easily attainable

using Ada task types to model the various processes involved. The firing of a Pr-T net

transition "may correspond to a task entry call" (Mulcare, 1990, p.186). Through the use

of Ada generic packages, any number of various architecture components (tasks) may be

instantiated. Their design methodology is described through the example design of a

simple bus with interacting components which consists of specification, then Pr-T net

23

modeling followed by Ada task/package coding. The results of the experiment concluded

that very little effort was required to model the system. Also, any components modeled can

become a portion of a growing reusable library of components. The author emphasizes that

"the Pr-T net served to focus the entire simulation development" (Mulcare, 1990, p. 189).

B. OBJECT-ORIENTED DESIGN

There are many textbooks and papers emerging on the subject of object-oriented

design methodologies. Unfortunately, "To date, there is no design methodology that is

universally accepted by the object-oriented community" (de Paula & Nelson, 1991, p.203).

After reviewing various textbooks and papers, the design methodology proposed by de

Paula and Nelson was selected (because of its ease of use) for development of systems in

this thesis. The major steps of their design methodology is presented below (de Paula &

Nelson, 1991, pp. 204-205):

(1) Identification of the objects and classes.
(a) Initial definition of the objects and classes.
(b) Analysis of the object's variables.
(c) Analysis of the object's methods.

(2) Refinement of the objects and classes.
(a) Addition of necessary information.
(b) Elimination of redundant information.
(c) Determination of class and instance variables.
(d) Identification of composite objects.

(3) Organization of the classes into a hierarchy.
(a) Analysis of the implementation language.
(b) Construction of the hierarchies.
(c) Review of the classes' variables/methods.

The power of OOP lies in its natural ability to closely map the system to the actual

environment the programmer is trying to modeL The first step (Identification of the objects

and classes) of the procedure identifies the objects and classes necessary to build the

desired model. Classes and objects can initially be derived from the problem domain, from

24

sources such as the the following: Tangible things (cars, houses), Roles (pilot,

programmer), Events (birthday, graduation), Interactions (meeting), People (manager,

bricklayer), Places (Areas set aside for people or things), Things (Physical objects that are

tangible), Organizations, Concepts, and Events (de Paula & Nelson, 1991).

The next step in the design process is "Refinement of the objects and classes". This

step examines the methods and variables defined in the previous section. This step outlines

a procedure designed to simplify the classes in preparation of building a class hierarchy.

The final step (Organization of The Classes Into a Hierarchy) of the design process

organizes the classes defined in the previous steps into a class hierarchy. Class hierarchy

organization has some dependency on the particular language used to implement the

application.

The most important guideline de Paula and Nelson give for construction of a

hierarchy is to "factor common methods as high as possible" (de Paula & Nelson, 1991,

p.207). This allows the common attributes (methods and variables) of a class to be shared

by all the subclasses via inheritance. If two or more classes have attributes in common but

share no common superclass, an abstract class can be created as a superclass to allow these

common attributes to be inherited.

de Paula and Nelson point out that when reviewing the classes' variables and

methods it is necessary to look for classes that inherit unwanted variables and methods

from their superclasses (de Paula & Nelson, 1991, p.6). If the inheritance of unwanted

variables/methods cannot be removed, then some of the classes may have to be modified.

There is no standard format for representing class hierarchies. A simple method for

specifying a class definition in a language-independent manner is given by Nelson (Nelson,

1990, p.3) as presented in Figure 2.1. This format is used for representing classes in the

text of this thesis.

25

Class <class-name>
Superclasses: <superclass 1>, <superclass_2>,
Class Variables: <classvar_1>, <class_var_2>,
Instance Variables: <inst.varl>, <instyvar 2>, ...
Methods: <method_name_1>, <method name_2>,

Figure 2.1 Class Definition

C. CONCLUSIONS

This chapter introduced the various research in the area of computer architecture

simulation. This chapter also introduced the basic concepts of object-oriented design, and

described the methodology used in this work. It showed that several of the researchers are

intermsted in developing class libraries to model computer hardware objects. Most of the

researchers pointed out that the design of the class hierarchy is the crucial portion of the

design of any simulator. I feel that the research outlined in this chapter demonstrates a need

for a system with the following features: incorporation of reusable objects, an intuitive user

interface, and development using commercial software on a commercial microcomputer. It

should also be afordable for education purpbses.

26

III. SOLUTION

Chapter I introduced the concepts necessary to understand OOP, Prograph, and the

basic components of a computer microarchitecture. This chapter begins by discussing the

construction of a 'generic' microarchitecture class hierarchy and the objects necessary to

simulate a typical computer microarchitecture. This chapter also outlines the class hierarchy

and program construction for the implementation of two different microarchitecture

simulators.

A. DESIGNING A 'GENERIC' MICROARCHITECTURE CLASS

HIERARCHY

This thesis uses the object-oriented design methodology presented in de Paula and

Nelson's paper for the construction of class hierarchies (de Paula & Nelson, 1991).

Previously discussed in Chapter IL the following is an outline of their design methodology

(de Paula & Nelson, 1991, p.2):

(1) Identification of the objects and classes.
(a) Initial definition of the objects and classes.
(b) Analysis of the object's variables.
(c) Analysis of the object's methods.

(2) Refinement of the objects and classes.
(a) Addition of necessary information.
(b) Elimination of redundant information.
(c) Determination of class and instance variables.
(d) Identification of composite objects.

(3) Organization of the classes into a hierarchy.
(a) Analysis of the implementation language.
(b) Construction of the hierarchies.
(c) Review of the classes' variables/methods.

This methodology can be easily applied to the problem of designing the objects and classes

of a computer microarchitecture.

27

1. Identification of the Objects and Classes

a. Initial definition of the objects and classes

In Chapter I, the components of computer microarchitectures that are

common to most computers were introduced. These include: register, memory, ALU,

muxs MAR, MBR, shifter, MIR, control store, and MPC. These components can be

thought of as the initial set of classes.

Next an initial definition of the variables and methods associated with each

of these classes must be specified. The following is the initial set of class definitions for

typical components found in a computer microarchitecture as specified above:

Class: ALU
Variables: none
Methods: and, or, not, math, zero?, positive?
Description: Represents a combinational circuit; thus, it
has no state. Methods are provided that perform logical
operations on a stream of input data.

Class: CONTROL STORE
Variables: varies
Methods: load, read
Description: Holds the entire microprogram. It must be
loaded with the microprogram prior to any simulation
execution.

Class: MAR
Variables: contents (string of bits)
Methods: mar, read, write
Description: Contains an address of a MEMORY
LOCATION within a MEMORY BANK. The method
mar accepts a control signal which determines if a value is to
be stored into the MAR.

Class: MBR
Variables: contents (string of bits)
Methods: mbr, read, write
Description: Models the data interface to the memory
bank. The method mbr accepts a control signal which
determines if the data input wil be wdm the MBR.

Class: MEMORY BANK
Variables: contents (array of

MEMORY LOCATIONs)

28

Methods: initialize, load, read, write
Description: A read or write to a MEMORY BANK
implies a read or write to a specific M E M O R Y
LOCATION contained in the MEMORY BANK. The
method load is used to load a user program or data into the
MEMORY BANK.

Class: MEMORY LOCATION
Variables: contents (string of bits)
Methods: initialize, read, write
Description: Used to describe the contents of a location
in a MEMORY BANK.

Class: MIR
Variables: contents (string of bits)
Methods: decode, read
Description: Contains the various control signals. The
method decode is used to parse the register contents into
required control fields.

Class: MPC
Variables: contents (string of bits)
Methods: set, increment, read, jump
Description: Models a microprogram counter.

Class: MUX
Variables: none
Methods: mux
Description: Models a combinational circuit The output
is one selection from the many inputs.

Class: REGISTER
Variables: contents (string of bits)
Methods: initialize, read, write
Description: Defines how the data is represented in a
system, (i.e., how many bits represents a register/memory
location).

Class: REGISTER BANK
Variables: contents(array of REGISTERs)
Methods: initialize, load, read, write
Description: Similar to a MEMORY BANK.

Class: SHIFTER
Variables: none
Methods: shiftleft, shift_right, noL.shift
Description: Models a combinational circuit. Methods
take a binary input and perform a binary shift to the left or
right

29

b. Analysis Of The Object's Variables

This step looks at the variables associated with the objects defined in the

previous section. de Paula and Nelson recommend looking for the following (de Paula &

Nelson, 1991, p.3):

1) variables that are common to groups of objects (classes)

2) variables having the same value for all objects of a class

3) variables that can be calculated or derived from other variables

4) variables that can be decomposed into more elementary variables

5) variables defined for only a single class

Applying de Paula and Nelson's guidelines to the previously described

classes, we determine the following: The classes, REGISTER, MAR, MBR, MIR, and

MPC, all share a common variable contents (guideline #1 above). However, for this

application the value of contents for MPC is an integer value. Thus, the variable

contents of the class MPC cannot be treated the same as the variable contents of the

classes REGISTER, MAR, MBR, and MIR. Yet, the MPC class still requires a read

method like the previously mentioned group of classes. The classes CONTROL

STORE, MEMORY BANK, and REGISTER BANK also share the variable name

contents but in this context contents refers to an array of the respective location types

(i.e., MEMORY LOCATIONS for MEMORY BANK, etc.). Further observation

of the class descriptions show no variables to which guidelines #2, #3, #4, or #5 may be

applied.

30

c. Analysis of the Object's Methods

This step looks at the methods associated with the objects defined in the

previous section. The following points should be considered (de Paula & Nelson, 1991,

pp. 3-4):

1) Look for methods that are common to several classes.

2) Every concrete class should have, as a minimum, a set of methods to create,
delete, maintain, and display its instances.

3) In order to enforce encapsulation, it may also be necessary to define methods for
accessing and updating each variable.

The following is a summary of significant observations made by applying

the above design guidelines to each object's methods: The classes REGISTER,

MEMORY LOCATION, MAR, MBR, MIR have the common methods read and

write. REGISTER and MEMORY LOCATION also share the method initialize.

The similar classes MEMORY BANK, and REGISTER BANK share the methods

initialize, load, read, and write. Also, the class CONTROL STORE shares the

methods load and read with MEMORY BANK and REGISTER BANK.

2. Refinement of the Objects and Classes

a. Addition of Necessary Information

The methods BINARY READ and BINARY WRITE were added to

the classes MEMORY BANK and REGISTER BANK. These classes require two

types of read and write methods. Due to programming concerns it is necessary to read

from and write to a storage/memory location using an integer or binary input. Therefore

the BIN-read and BIN-write methods were added to these classes to allow this

flexibility. The binary version of the read and write methods use the corresponding integer

31

version of these methods, by converting the binary address to its integer equivalent and

calling the integer version.

Closer examination of the object CONTROL STORE shows that there

is still a need to determine how the microprogram will be represented. Each step in a

microprogram has the same type of data, which determines what control signals will be

sent. The object CONTROL STORE should be made up of this data. This data format

can be clearly represented by introducing a new class, MICROINSTRUCTION, which

will define the various fields necessary to make up a microprogram microinstruction.

Thus, CONTROL STORE will consist of many instances of

MICROINSTRUCTION. This new class MICROINSTRUCTION also affects the

class MIR, in that the MIR contains a single MICROINSTRUCTION.

Examination of the classes REGISTER, MEMORY LOCATION,

MAR, MBR, and MIR shows that each of these classes has the instance variable

contents. If one considers the meaning of contents applied to each of these classes it

becomes apparent that the value of contents for an instance of REGISTER, MEMORY

LOCATION, MAR, MBR, and MIR consists of a single n-bit value (representing the

contents of a register), while the value of contents for an instance of CONTROL

STORE, MEMORY BANK, and REGISTER BANK will consist of an array of

many n-bit numbers (one for each storage location). Each one of these storage locations

can be described by an instance of that class related individual storage type. This results

with the instance variable contents containing an array of REGISTER, MEMORY

LOCATION, or MICROINSTRUCTION for its corresponding store type.

At this point, a design decision was made to represent the instance

variable contents as a list. This allows great flexibility as Prograph provides very

powerful list primitives. Representing contents as a list allows the application program to

32

represent storage locations with variable lengths. In the case of REGISTER, MAR,

MBR, MIR, and MPC, where contents represents a single binary number, contents

can be represented as a list of booleans, where each boolean represents a bit of the binary

number. In the case of CONTROL STORE, REGISTER BANK, and MEMORY

BANK, the value of contents represents many binary numbers so contents can be

represented as a list of instances of of the respective location type.

b. Elimination of Redundant Information

Redundant data is simply data which is not necessary to store directly as it

may always be derived from some other data. There is no redundancy in the data

maintained by the various classes defined so far.

c. Determination of Class and Instance Variables

The variables in the classes discussed above have unique values for each

instance of each class. This means that these variables can be represented as instance

variables.

d. Identification of Composite Objects

There are no variables in the above mentioned classes that decompose into

more elementary variables. Thus, there are no composite objects.

3. Organization of The Classes Into a Hierarchy

a. Analysis of the Implementation Language

The following questions should be considered (de Paula & Nelson, 1991,

p.2):

1) Does the system provide single, multiple, or selective inheritance?

2) If multiple inheritance is supported, what are the conflict resolution rules?

3) Can inherited methods be redefined (overridden) in the subclasses?

4) Can inherited variables be redefined (overridden) in the subclasses?

33

The implementation programs supporting this thesis are implemented in

Prograph, an object-oriented programming environment. Prograph supports single

inheritance only, which answers question one above and makes question two not

applicable. In answer to question three, Prograph allows inherited methods to be modified

or redefined, allowing the superclass to keep its original definition while allowing

modifications in the subclass method. Prograph also allows inherited variables to be

redefined which answers question four. Therefore, the object-oriented programs for this

thesis will have the following features: 1) single inheritance; 2) inherited methods can be

redefined in subclasses; and 3) inherited variables can also be redefined in subclasses.

b. Construction of the Hierarchies

In section A.l.b it was determined that REGISTER, MEMORY

LOCATION, MAR, MBR, MIR, and MPC have the same instance variable

contents. These classes also share several methods. The classes MAR, MBR, MIR,

and MPC represent specific applications of the more general class REGISTER which

allows these classes to be subclasses of the class REGISTER. Since the classes

REGISTER and MEMORY LOCATION share a common instance variable, and

several methods, but share no common superclass, it was decided to add the abstract class

STORAGE LOCATION. With the class STORAGE LOCATION defined, the

methods initialize, read and write can be moved up to the STORAGE LOCATION

class.

Further examination of the above class descriptions also reveals that the

classes CONTROL STORE, MEMORY BANK, and REGISTER BANK share a

c mon instance variable and many common methods, but no common superclass. Thus,

the abstract class STORAGE BANK was'defined as a superclass for these classes. The

34

methods initialize, read write BIN-read, BIN-write, and load can then be moved

up to the STORAGE BANK class.

The remaining classes ALU, MICROINSTRUCTION, MUX, and

SHIFTER have no commonalities with any other class, and are therefore unrelated to

other classes by inheritance. Figure 3.1 presents the class hierarchy that results from the

above discussion.

MUX microinslruotion

soa*location ALUshfe

memory locationr tstorage bank

control store register bank

MAR MBR IR MPC memory bank

Figure 3.1 'Generic' Class Hierarchy

We can now present a revised list of the 'generic' computer

microarchitecture class definitions:

Class: ALU
Superclass: none
Variables: none
Methods: and, or, not, math, zero?, positive?

35

Class: CONTROL STORE
Superclass:
Variables: contents:

(array of MICROINSTRUCTIONs)
Methods: none

Class: MAR
Superclass: REGISTER
Variables: none
Methods: mar

Class: MBR
Superclass: REGISTER
Variables: none
Methods: mbr

Class: MEMORY BANK
Superclass: STORAGE LOCATION
Variables: contents: array of MEMORY LOCATIONs
Methods: none

Class: MEMORY LOCATION
Superclass: STORAGE LOCATION
Variables: none
Methods: none

Class: MICROINSTRUCTION
Superclass: none
Variables: instruction (string of bits)
Methods: none

Class: MIR
Superclass: REGISTER
Variables: none
Methods: decode

Class: MPC
Superclass: REGISTER
Variables: none
Methods: set, increment, jump

Class: MUX
Superclassi
Variables: none
Methods: mux

Class: REGISTER
Superclass: STORAGE LOCATION
Variables: none
Methods: none

36

Class: REGISTER BANK
Superclass: STORAGE BANK
Variables: contents: array of REGISTERs
Methods: none

Class: SHIFTER
Superclass: none
Variables: none
Methods: shift left, shift right, no shift

Class: STORAGE BANK
Superclass: none
Variables: contents: array of STORAGE
LOCATIONs
Methods: initialize, load, read, write, binary read,
binary write

Class: STORAGE LOCATION
Superclass: none
Variables: contents: string of bits
Methods: initialize, read, write

c. Review of the classes' variables/methods

The constructed class hierarchy does not introduce any unnecessary

variables or methods in any class. We believe that it provides the basis for an accurate

model of the real world situation.

B. IMPLEME NTATION OF TANENBAUM'S MICROARCHITECTURE

With the class hierarchy of a general microarchitecture designed, it is now relatively

easy to implement the design for a specific microarchitecture. A simple microarchitecture

presented by Tanenbaum (Tanenbaum, 1984, pp. 126-149) can be modeled using the

classes presented in section A.3.b. A complete block diagram of his microarchitecture

design is reproduced in Figure 3.2 below:

37

IInc

c StoreI "' -Sub
*I I
*I I

SI U U R
II XI

._ .

Figue 3. Taegisters MirarItetR Tnnam 94 .12

r

e Micro

Figure 3.2 Tanenbaum's Microarchitecure (Tanenbaum, 1984, p. 132)

1. Operation of the Tanenbaum Microrchitecur

This section is a summary of the design and operation of Tanenbaum's example

microarchitecture; for more detail on this design refer to (Tanenbaum, 1984, pp. 126-149).

This microarchitecture design is divided into two main subsections; the datapath and the

control path. The left side of Figure 3.2 is the data path and the right side is the control

path. The data path side of this design consists of a 16 location register bank, AMUX,

38

ALU, SHIFTER, MAR, MBR, and memory. The bus width of the datapath is 16 bits, all

registers and memory locations are also 16 bits. Some of the register locations are for

general use and others are for specific use; a summary of the purpose of the various register

locations is summarized in Figure 3.3.

Location Purnose Symbol
00 Program Counter PC
01 Accumulator AC
02 Stack Pointer SP
03 Instruction Register IR
04 Temporary Instruction Register TIR
05 Zero 0
06 +1 1
07 -1 -1
08 AMASK (address mask) OFFF (hex)
09 SMASK (stack mask) 00FF (hex)
10-15 General Purpose Registers

Figure 3.3 Microarchitecture Register Uses

Two of the registers can be read simultaneously and placed on the A and B

buses. The A bus signal is fed into the AMUX along with a signal from the MBR.

Depending on the control signal (0-A bus, 1-MBR) to the AMUX (a simple two input

multiplexer), one of the two inputs will be passed on to the left input of the ALU. The

value on the B bus is fed directly into the right input of the ALU. The value on the B bus is

also routed to the input of the MAR, if the control signal to the MAR is TRUE the value of

the B bus will be read into the MAR.

Two control signals, Fo and F1, bause the ALU to perform one of the following

operations: A+B, A AND B, A, -A (where A and B represent the data on the respective

buses). The ALU generates one data output and two control outputs. The data output

feeds to the input of the shifter. The two control output signals are Z (true if data result is

39

zero) and N (true if the data result is negative). These two signals feed into the micro

sequencing logic.

The shifter shifts the input data one bit to the left or right, or it can pass the data

through to the C bus without alteration. The shifter has two control signals as input, So,

and Si. The output of the shifter is placed on the C bus and can be fed to the register bank

and the MBR. The value of the C bus will be loaded into the desired location in the register

bank if the ENC control is TRUE. The value of the C bus will be loaded into the MBR if

the MBR signal is also TRUE.

The MAR and MBR in this design can be considered to be the interface between

the memory and the CPU. When the MBR receives a READ signal of TRUE it will read

the contents of the memory location pointed to by the MAR and place that location's value

into the MBR. When the MBR receives a WRITE signal of TRUE it will place the contents

of the MBR into the memory location pointed to by the value of the MAR. As discussed in

the introduction, the access speed of memory is usually slower than the access speed of the

CPU's registers. In this design it takes two complete machine cycles to read from or write

to memory. This means that register access is tice as fast as memory access.

This architecture uses a microcoded program to control its components. The

microprogram is stored in the Control Store. At the beginning of each clock cycle, the

contents of a location (pointed to by the MPC) of the control store is loaded into the MIR.

The MIR is divided into various fields, each field holding a control signal for a specific

component. These control signals are routed to the various hardware components in the

microarchitecture. As soon as the desired microinstruction is loaded into the MIR, the

signals are routed to these components for the entire clock cycle. The status of the

microprogram is maintained by the MPC. After the MPC is read its value is incremented

and the result is presented to the Mmux. Two of the fields of the microinstruction are the

40

ADDR and the COND fields. The value of the ADDR field is presented to the input of the

Mmux. The Mmux chooses between the ADDR and increment inputs for an output. The

selection depends on the output of the micro sequencing logic (based on the outputs of N

and Z) and the value of the COND read from the MIR. The COND code is summarized in

Figure 3.4 (Tanenbaum, 1984, p.13 4):

0 = Do not jump; next microinstruction is taken from MPC + 1
1 = Jump toADDR ifN = 1
2 = Jump to ADDR if Z = 1
3 = Jump to ADDR unconditionally

Figure 3.4 COND Code Definitions

This result determines if the next microinstruction executed will be the next

instruction in the control program's sequence or a jump to some other portion in the

microprogram.

Each clock cycle is divided up into four subcycles. The following events occur

during these subcycles (Tanenbaum, 1984, p.131):

1. Load the next microinstruction into the MR, send control

signals to various components.

2. Gate registers onto the A and B buses, increment the MPC.

3. Allow ALU and shifter time to produce stable outputs and

load MAR if required.

4. Store the C bus into the desired register location if desired and

load the MBR if required.

2. Design of The Class Hierarchy

The design of a class hierarchy to implement a simulation program for

Tanenbaum's microarchitecture begins with the general microarchitecture classes outlined

in section A.3.b. and building from them into a full Macintosh application. Appendix C

contains the complete Prograph source code listing for the simulation of Tanenbaum's

41

microarchitecture. A design decision was made to allow the microarchitecture to simulate

memories and registers with a variable bit width. This allows for quicker test runs and also

allows the simulator to model memories of various sizes.

a. Review and Modification of the General Class Hierarchy

No modifications (from section A.3.b) are required to the following

classes: ALU, MAR, MBR, MIR, MUX, MEMORY LOCATION,

MICROINSTRUCTION, REGISTER, REGISTER BANK, SHIFTER,

STORAGE BANK, and STORAGE LOCATION. The following classes were

modified (The revised 'generic' class descriptions are located in Appendix A):

Class: CONTROL STORE
modification: Added a load method that invokes the
inherited load method from storage bank to assign
appropriate variable values.

Class: MEMORY BANK
modification: 1) Added a load method that invokes the
inherited load method from storage bank to assign
appropriate variable values. 2) Overshadowed inherited
methods read and write (from STORAGE BANK) to
support read/write using MAR/MBR interaction with the
memory.

Class: REGISTER BANK
modification: Added a load method that invokes the
inherited load method from storage bank to assign
appropriate variable values.

Class: MPC
modification: 1) Added instance variables cycles &
counter for'simulation support. 2) Added methods set
cycles and get counter. Set cycles is used to set the cycle
counter to zero and store the desired number of clock cycles
in an instance of MPC. The method get counter, passes the
counter value of an instance of MPC to its calling method.

Class: MICRO SEQUENCER
Superclass: none
Variables: none
Methods: generate signal

42

Description: Simulates the micro sequencer component
of Tanenbaum's architectue. The method generate signal
sends a signal to the mux for controlling logic and
addressing of the MPC.

The source code listing in Appendix C also includes several other classes

that have not been discussed thus far. These classes include: System, Application,

Menu, Menu Item, Window, sim and Time. The time class is supplied in a class

library provided by TGS systems (The TGS systems bulletin board). This class is used to

convert system time to strings for 1/0 purposes. The 'About Micro Simulator' menu item

displays a dialog box that gives program credits and the date and time. The sim class is a

class added to the hierarchy (inheriting variables/methods from the class Window) which

contains methods that implement input/output for simulation purposes. The other classes

are all System classes supplied with the Prograph interpreter/compiler (TGS Systems,

1990, p.109). These classes must be included with any application; they include the

attributes and methods necessary to handle menus, windows, and event control for stand

alone applications.

3. Design of the Micro Simulator

a. The user interface

The Micro Simulator was designed to be a stand alone Macintosh

application. This means that the user interface consists of a menu bar for controlling the

program and windows and dialog boxes for facilitating input/output. The Menu Bar is

shown in Figure 3.5.

43

File Edit Controls
Load Memory Define Memory
Load Registers Riter Register
Load Control Store Cgcle
Quit Single Instruction

Multiple Instructions
Set MPC
Run # of Cycles

Figure 3.5 Micro Simulator's Menu Bar

Referring to Figure 3.5, the first menu item under the File menu is Load

Memory. This selection is used to load a text file that represents the initial memory map

into the memory bank. A sample program that can be loaded into memory using the Load

Memory selection is presented in Figure 3.6.

Opcode Macro Instr Comments

00-0111000000000100 LOCO 4 Loads the constant 4 into the AC
01-1111010000000000 PUSH Push the contents of the KC onto the stack
02-0011000000001100 SUBD MEM[121 Subtract memory loc #12 contents from AC
03-0101000000000101 JZER 5 if AC - 0 then PC :- 0
04-0110000000000001 JUMP 1 Set PC :- 1

05-0110000000000101 JUMP 5 Stay running idle
06-0000000000000000
07-0000000000000000

08-0000000000000000

09-0000000000000000

10-0000000000000000

11-0000000000000000

12-0000000000000001 Constant 1

Figure 3.6 Sample Object Program Text Format

This is a simple program that loads the constant 4 into the accumulator and

then pushes copies of it five times on top of the stack.The numbers preceding the dash are

the desired memory location. The numbers following the dash are the instruction opcodes

or memory values. These are the actual values loaded into the memory. Any characters

44

following the opcodes are considered comments and are not loaded. The first column

following the opcode is a macro description of the preceding opcode. The column

following the macro description contains general comments. The text file has to be as long

as the program requires, if the program contains 13 instructions then the text file must

contain 13 lines. Notice that locations six through 11 have no values; that is because they

are used as place holders for an actual constant value at location 12. If these place holders

were not used the constant that should have been loaded at location twelve would instead be

loaded at location 6.

Referring once again to the File menu of Figure 3.5, the Load

Registers selection operates exactly the same as the Load Memory selection, except that

the data is directed to the Register bank. The Load Control Store selection similarly

loads a text fie into the Control Store. The Quit selection is used to quit the Micro

Simulator application.

The Edit menu selection of Figure 3.3 is a standard Macintosh menu bar

selection and must be present for all Macintosh applications. For more information on this

selection, refer to Inside Macintosh Volume I (Apple Computer, 1985, p.58).

The Controls menu of Figure 3.4 is the menu which implements the

features of the Micro Simulator. The Define Memory selection is used to initialize the

simulator's register and memory configuration. This selection causes a dialog box to be

displayed as shown in Figure 3.7. The first three entries are self explanatory. They

determine the width, in bits, of the memory/registers and the respective number of locations

for each MAR size determines the desired bit width of the MAR. This allows the

simulation to limit the address space allowed for the memory interface.

45

Define Registers & Memories

Register Width:

Number of Registers: 12

Number of Memories:

MRR Size: 12

Figure 3.7 The Define Memory Dialog Box

Referring once again to the Controls menu of Figure 3.4, the Alter

Register command displays a dialog box which allows the user to input a desired register

location (by number) and the new value to load into that register from the keyboard.

Cycle causes the simulator to execute one microinstruction. Single Instruction causes

the simulator to execute one macro instruction. The Multiple Instructions command

displays a simple dialog box that requests the desired number of macro instructions to be

executed; this causes the simulator to execute that number of macroinstructions. The Set

MPC command displays a dialog box which allows the user to set the MPC. The Run #

of Cycles command displays a dialog box asking for the desired number of clock cycles

to be executed, then executes the desired number of clock cycles and stops.

Status of the simulator is displayed in a window (Micro Simulator) which

includes a diagram of the data side of the microarchitecture along with the values of the

various components. A reduced copy of the Micro Simulator window is presented in

Figure 3.8. Any values displayed are for the last microinstruction executed.

46

Mcra uulator
PAPC-aaiiammha

ElIlIEIIAIEMU D1119469911 m Nba

4-I1 4-10000ma20i1,0 0

1 U-WIUI I W1 UU10I891020t
2-612-108=11011BS 4 o

14-ESISIONOIOISDN

IG-SS3SIMONIOD3N

Figure3. Wrte Micr SiuatrW n
The variousgv chc box s ENC, MBMR .zersn oto

signals 9400914 setfo h atmcontuto.A ciae o 'Isrbdintebx

The vrectngls cconinxexds pa th contBM et .fteresetv control

The boxes labeled A bus and B bus indicate the values of the respective buses. Thbe smaller

boxes above those values indicate what register locations (by binary number) were loaded

on the respective buses. There are also text boxes to indicate the contents of: MAR, MBR.

and C bus storage location. The text boxes associated with the ALU, AMUX, and Shifter

indicate the outputs of those devices. The boxes under MPC Last and Next indicate the

number of the previous microinstruction executed and the number of the next

47

microinstruction to execute. The Counter text box indicates how many clock cycles since

the last time MPC was set. The text box below the Counter box presents the mnemonic of

the last complete macro instruction executed. Two scroll boxes are used to display the

contents of the memory and register banks.

b. Micro Simulator Program Structure

The dataflow nature of Prograph allows for the Micro Simulator program

structure to be relatively simple. As stated in section B.1, each clock cycle is divided into

four subcycles. A universal method Cycle is a method that contains four local operators

that each contain their respective subcycle. Figure 3.9 presents the logical dataflow

modeled by the Prograph source code. This code simply gets the Micro Simulator window

and then executes each subcycle sequentially. The dataflow implementation automatically

forces each subcycle (like a precedence graph) to run to completion before the next

subcycle can execute. Several universal methods are provided to drive the Cycle method

for the following: one complete cycle, several cycles, and to completion of a single macro

instruction.

48

48ll

cycle- 1:1

Mlico Simuim...

uby cl4

Figure 3.9 Cycle Universal Method

Program state in the Mcro, Simulator is maintained by using Prograph

persistents. These persistents are presented in Figure 3. 10. These persistents are initially

loaded during the execution of the initial universal method, and get updated during various

stages of subcycle execution.

49

Persistents

control store register store register

MBR Store MAR Store IlPC Store MAR Size

Register Scroll Memory Scroll memory store

Figure 3.10 Micro Simulator's Persistents

C. IMPLEMENTATION OF A SIMPLE COMPUTER (ASC)

Tanenbaum's micoarchitecture was easily implemented with few modifications using

the 'generic' class design presented in section A.3.b of this chapter. The best way to

fully test this class design was to implement an architecture of a significantly different

design. This section introduces another architecture called "A Simple Computer" (ASC)

which is presented by Shiva (Shiva, 1991, pp. 220-273). A brief description of the design

and operation of the ASC and the implementation of its simulator using the 'generic'

classes refined in section B (revised description of 'generic' classes are located in

Appendix A) is now presented.

1 Operation of the ASC Microarchitecture

A simplified block diagram of the ASC is presented in Figure 3.11. Like

Tanenbaum's microarchitecture, the ASC has a datapath side and a cw a beft i T

datapath side consists of three buses, various registers, memory bank (including

50

MAR/MBR), index register bank, constant registers (1 and -1 hard wired) and alu. All

components on the datapath side of the ASC are sixteen bits wide, and numbers are

represented using two's complement arithmetic. BUSI and BUS2 direct data from the

various registers into the ALU. BUS3 directs data from the output of the ALU back to the

various registers.

BUIS1 BUS2E,

SPC Index

so MAR RegistersI1
Memory2

IRI

I' Ace IADD

me TRA2

BUS3

Figure 3.11 ASC Microarchitecture Block Diagram (Shiva, 1991, p.229)

Each register (other than the Index Registers) is a unique single entity. This

means that all the appropriate control signals are routed to each of these devices separately

(write to BUS 1/2, read from BUS3). It should also be noted that not all registers can write

to both BUS 1 and BUS2. The design of the microprogram ensures that only one register

51

at a time writes to each bus. BUS 1 and BUS2 also have the sixteen bit constant values '1',

while BUSI also has the sixteen bit constant value '-1'. These 'values' act like registers

with read only capability.

The ALU receives six signals from the microcontrol unit and receives sixteen bit

data from BUS 1 and BUS2. Only one control signal can be applied at a time. These

control signals control the following functionality to the ALU:

1) ADD, add the values on BUSI and BUS2 and place the results on BUS3.

2) COMP, take the two's complement of BUS 1 and output the results to BUS3.

3) SHR, shift the value of BUS 1 one bit to the right, with the high order bit
replacing the low order bit, and output the results to BUS3.

4) SHL, shift the value of busl one bit to the left, replacing the low order bit with

zero, and output the results to BUS3.

5) TRA1, directs the value of BUS 1 to BUS3.

6) TRA2, directs the value of BUS2 to BUS3.

Notice that in the ASC design the shifter functionality is included within the

ALU. The ALU also updates the value of the PSR (Processor Status Register). The PSR

consists of 4 bits, C, N, Z, and 0; these values stand for carry, negative, zero, and

overflow respectfully. The ALU updates the PSR only when the accumulator register is

written to. The overflow bit is set when the sum operation results in a number larger than

215 -1. The negative bit is set when the result of an ALU operation is negative. The zero

bit is set when the result of an ALU operation is zero. The carry bit is set when a carry out

from the high order bit results from an addition operation.

The MAR and MBR registers are used as an interface between the memory and

the CPU. When the MBR receives a READ signal it reads the contents of the memory

pointed to by the MAR and place that location's value into the MBR. When the MBR

receives a WRITE signal it will place the contents of the MBR in the location of memory

52

pointed to by the value of the MAR. In this design it takes two complete machine cycles to

read from or write to memory (i.e., register access is twice as fast as memory access).

The ASC design supports four types of addressing; direct, indexed, indirect,

and indexed-indirect addressing (preindexed-indirect). The addressing modes are directly

controlled by fields of the ASC's macroinstruction. The ASC's microarchitecture design

relies specifically on this macroinstruction format. As mentioned above, all instructions

used by ASC are sixteen bits wide. The ASC's instruction format is divided up into

various fields as presented in Figure 3.12.

Extension Bit Indirect Flag Index Flag

OpcodsAddress
15 14 13 12 11 10 9 8 7 0

Figure 3.12 ASC Instruction Format

This implementation of the ASC supports 16 macroinstructions, thus four bits

in the macroinstruction is needed to describe the opcode (bits 12-15). Bit 11, the opcode

extension bit, can be used to increase the number of opcodes to 32. Bit 10, the indirect

flag, is set when indirect addressing is used. The two bit index flag (bits 8 & 9) has two

purposes: when the flag is set to '00 ', the index flag indicates that indexed addressing

mode is not in use; when the flag is set to the values '01' through '11', it indicates that

indexed addressing is in use with the corresponding index register. The eight bit address

field (bits 0-7) is used for direct addressing, or combined with the other addressing modes.

For a complete description of the actual instruction set refer to (Shiva, 1991, p.193).

The control side of the ASC microarchitecture consists of a Microcontrol unit,

MPC, MIR, Decoder, and a Control Store. This configuration is presented in Figure 3.13.

53

The MPC points to the next line of the microprogram to fetch (from the control store). A

microinstruction is 21 bits wide and can be in one of two different formats. The formats

are distinguished by the high order bit. If the high order bit is zero, it is a type zero

microinstruction. If the high order bit is 1 the instruction is a type one instruction. A type

zero instruction actively sends control signals to the various components of the

microarchitecture; each bit represents a control signal. A type one microinstruction uses

input status signals to alter program flow of the microprogram. Therefore, a type one

microinstruction will cause the MPC to be set to some address other than the next

instruction in the control store. For a more detailed description of the microinstruction

formats and control signal outputs see (Shiva, 1991, pp. 267-268).

SttsSgnl ' Control Store

From: Microcontrol unit
PSR contents (MCU)
IR contents
Index Register contents

Control Signals

Figure 3.13 Block Diagram of ASC Microcontrol Hardware

The Microcontrol unit receives status signals from the PSR, instruction register

(IR) and index registers. Based on the status signals and the type of the microinstruction,

54

the microcontrol unit will either load a new address into the MPC and load a new

microinstruction into the MIR, or it will take the present contents of the MIR and decode it

into control signals, increment the MPC, and repeat the process.

2. Design of The Class Hierarchy

The design of a class hierarchy to implement a simulation program for the ASC

microarchitecture also begins with the 'generic' microarchitecture classes presented in

Appendix A and building from them into a full Macintosh application. Appendix D

contains the Prograph source code listing for the simulation of the ASC microarchitecture.

a. Review and Modification of the General Class Hierarchy

This section reviews each class defined in Appendix A ('generic' classes)

and describes the modifications necessary to implement these classes in the ASC design.

No modifications (from Appendix A) were required to the following

classes: CONTROL STORE, MAR, MBR, MPC, MEMORY LOCATION,

MEMORY BANK, REGISTER, REGISTER BANK, SHIFTER, STORAGE

BANK, and STORAGE LOCATION. The classes M U X and

MICROINSTRUCTION were not used. MUX was not used because the ASC design

contains no mux's. The MICROINSTRUCTION class was not used because simple

instances of register were used to hold microinstructions. The ALU class includes

message passing to the shifter class in its math method. This enables shifter functionality

in the ALU in accordance with the ASC microarchitecture design. The following classes

were modified or added.

Class: ALU (modified)
modification:
1) Added the method overflow to determine if the output
of the ALU is causing an overflow condition.
2) Modified the method math to account for the ASC
specific functionality (actual operations) including the
updating of the PSR.

55

Class: MICRO CONTROL (added)
Superclass:- none
Variables: none
Methods: mcu, read control store, BusI Data,

Bus2 Data, Bus3 Signals,
ALU Signals, Memory Signals.

Description: Contains methods to read micro-
instructions, generate control signals, and branch
microprogram control flow.

Class: MIR (modified)
modification: Added the methods decode 0, and decode 1
to decode the type zero and one microinstructions.

Class: INDEX BANK (added)
Superclass: STORAGE BANK
Variables: none
Methods: zero index
Description: Describes the data structure and methods
necessary for implementing an index bank for the ASC. The
zero index method generates a signal to determine if the
contents of an index register is zero.

Class: IR (added)
Superclass: REGISTER
Variables: none
Methods: parse
Description: The parse method separates the contents of
the instruction register into the various fields.

Class: PSR (added)
Superclass: REGISTER
Variables: none
Methods: decode
Description: Contains an instance variable that maintains
the value of a status register. Includes a method to decode
its contents for use in the microcontrol unit.

The source code listing in Appendix D also includes the various system classes

supplied by prograph and the class sim, as discussed in Section B.2.a.

56

3. Design of the ASC Simulator

a. The user interface

The ASC simulator, like the Tanenbaum simulator, was implemented

using Prograph on the Macintosh microcomputer. This section discusses the general

design of the ASC simulator and its user interface.

Figure 3.14 presents the menu bar for the ASC simulator. The ASC

simulator application menu bar and most of its controls have the same functionality as the

Tanenbaum micro simulator menu bar. Since the ASC does not use a general purpose

register bank, the Alter Register menu selection under the Controls menu was

removed. This menu selection allows the user to enter a value from the keyboard by

entering the register number and its new value. The Register menu was added to the

menu bar to enable keyboard entry changes for the program counter (Update PC).

File Edit Controls Register
Load Memory Define Memory Update PC
Load Registers Cycle
Load Control Store Single Instruction
Quit Multiple Instructions

Set MPC
Run # of Cycles

Figure 3.14 ASC Simulator's Menu Bar

The File menu is exactly the same as the Tanenbaum Micro Simulator,

and its selections provide the same functionality. The required data format for the input text

files is also the same. The Edit menu selection contains the standard Macintosh editing

features.

The Define Memory function was changed because the ASC simulator

was designed to operate with a fixed memory/register bus width of 16 bits. Also, since the

57

ASC uses individual registers, there is no need to specify the required number of registers

in the register bank. This selection still initializes the memory bank to the desired number

of memories. This resulted in a Define Memory Dialog Box with one input, 'Enter

Desired Number of Memories:'. This dialog box is presented in Figure 3.15. All other

menu selections have the same functionality as the Tanenbaum micro simulator.

Define Memories

Enter Desired Number of Memories:

20

Figure 3.15 The Define Memory Dialog Box (ASC)

Status of the simulator is displayed in a Window (Micro Simulator) which

includes a diagram of the data side of the microarchitecture along with the values of the

various components. A reduced copy of this window is presented in Figure 3.16. The

values in the various boxes indicate the value of the respective components after each

microinstruction is executed. Several new items were added: MIR, Index Bank, CNZV

(PSR), and the constant values (1 and -1). The CNZV output gives the status of the PSR,

while the constant values are placed on the associated input buses by the microcontrol unit.

The MIR box gives the bit string of the last microinstruction executed.

58

micro Silmultar
PCE a 10 oo|erP

b. ~ ~ ~~ i AP0Smuatr0rg0m trctr

g -iI OqO i~GMgB111 I P

O2 e13 Rea F--1010 I

Thel imlor's ai Writ useste ueondaCye a94-01 D1 IG@O@ODO10g I I I I IIIJM93--0000960000090O00 1 112--0400oDonoDOI
04-0010948601O11000 03-601600 919800 asE

09-@ODOO@0 I 1--

MIIR

I °R

Figure 3.16 The ASC Simulator Window

b. A$C Simulator Program Structure

The ASC simulator's main program uses the universal method Cycle (as

in the Tanenbaum simulator), but the ASC's design does not use subcycles. The Cycle

universal method is the main program and brings together all the various classes' methods
to work as a complete simulator. The other universal methods used in the Tanenbaum
simulator were also integrated seamlessly in the ASC simulator (generic conversions

between bit strings and boolean strings, etc). Program state is maintained by using

Prograph persistents (see Appendix D).

59

D. COMPARISON OF THE TWO SIMULATORS

Both architectures possess many similarities. Their designs have a classic layout that

consists of a data path and a control path. The data path side consists of some type of

register configuration (including a program counter, instruction register, and accumulator),

memory with a MBR/MAR interface, buses, and a two bus input ALU. The data path side

for these architectures is 16 bits wide. On the control side, both architectures have a

control store, MPC, and MIR. Both architectures use a microprogram to control their

various components for the execution of macroinstructions. Since they both use a

microprogram, their macro level instruction set can be expanded or changed by altering

their respective microprograms. With respect to the implementation of the simulators, both

designs use the same format for textfile input of the macroprogram to the memory. Both

simulators allow altering the microprogram by loading the control store with a textfile

representing the microprgram.

Although the Tanenbaum and ASC designs are very similiar, there are also some

differences in their designs. One major difference between the Tanenbaum design and the

ASC design is the layout of the registers. With the ASC, each register (other than the

Index Registers) is a unique single entity. This means that all the appropriate control

signals are routed to each of these devices separately (write to BUS 1/2, read from BUS3).

The Tanenbaum design uses a bank of registers which allows two registers at a time to

send their values to the A and B Buses and one register to receive the contents of the C

Bus. The registers are selected by sending the appropriate register numbers to the register

bank. Thus, the ASC design requires many more control signals to manipulate the

registers. In the ASC design not all registers can write to both BUS 1 and BUS2, while the

Tanenbaum design allows the same operations for all registers. The design of the

microprogram ensures that only one register at a time writes to each bus. The

60

implementation of ASC requires individually initializing each of the separate registers,

where the Tanenbaum simulator simply inializes the entire register bank with one operation.

In the ASC design, BUS I and BUS2 also have the sixteen bit constant values '1', while

bus 1 also has the sixteen bit constant value.'-l'. These 'values' act like registers with read

only capability. The ASC design uses an index register bank to support indexed

addressing. The functionality of the index bank is similar to the Tanenbaum register bank.

This required the addition of the index bank class in the ASC simulator. This class was

added to support the additional functions of indexed addressing.

While both designs support direct addressing, other addressing modes are not shared

by the two microarchitectures. The Tanenbaum design supports immediate addressing and

includes a stack, along with stack operations such as push and pop. Immediate addressing

is supported completely through the microprogram. The implementation of the stack does

not require any special simulator features except a register reserved for a stack pointer

(which is a general register in the Tanenbaum design) and the appropriate microprgram

support.

The ASC design supports direct, indirect, indexed addressing, and indexed-indirect

adressing. Direct addressing is similiar to the Tanenbaum design. Indirect, and indexed

addressing is supported by adding the method parse to the new class IR (Instruction

Register). The parse method decodes special fields that direct the Microcontrol unit to use

indirect, direct, or indexed-indirect addressing.

The microinstruction format of the two designs differs of course, but how the formats

are used is also different. In the Tanenbaum design, all microinstructions are of the same

type; a microinstruction is decoded and the various control signals are sent to all the

components. Part of the microinstruction field contains a conditional that, based on the

microsequencer output, will cause the Mmux to branch the microprogram or go to the next

61

microinstruction. In the ASC design, there are two types of microinstructions: a type zero

microinstruction, which sends control signals to the various components; and a type one

microinstruction, which controls branching of the microprogram. This difference in the

microinstruction format required various additions/alterations to the 'generic' classes. The

MIR class was modified to support the decoding of the two types of microinstructions.

The class MICRO CONTROL was added (in lieu of the MICRO SEQUENCER class

which was removed from the Tannenbaum simulator) to support the microcontroler

functionality specific to the ASC design. This type of change would be required when

switching between any different architectures. In the ASC design the Micro Control unit

makes all deciscions involving branching; this eliminates the need for a Mmux as found in

the Tanenbaum design.

The execution of macroinstructions also differs between the two designs. The

Tanenbaum design loads the macroinstruction into an instruction register. As the

microprogram progresses, the macroinstruction is shifted to the left. The microprogram

branches to different locations based on the value of the most significant bit of the

macroinstruction. This means that, depending on the size of the opcode of the

macroinstruction, the microprogram can branch for up to 8 cycles to parse the

macroinstruction (the largest opcode is 8 bits). The decoding of an ASC macroinstruction

is a much shorter process. The macroinstruction is fetched, and placed in the instruction

register. The opcode of the macroinstruction matches the address of the microcode

required to execute the macroinstruction. This results in a slightly larger microprogam, but

fewer cycles are needed for each macroinstruction. These differences are accounted for in

the respective simulators by microcode and their respective objects (MICRO

SEQUENCER in Tanenbaum, and MICRO CONTROLLER in ASC).

62

The Tanenbaum design sends three signals to the micro sequencer: N (ALU output is

negative); Z (ALU output is zero); and COND (microprogram branching conditions based

on N and Z). The ASC design is slightly more complicated. It maintains a PSR

(Processor Status Register) that has several bits (C, N, Z, and 0 as discussed in section

C.1) representing the status of the number in the accumulator. There are more inputs to the

micro controller, PSR, JR, and Index Registers contents. These differences are supported

in the respective classes MICRO SEQUENCER and MICRO CONTROLLER.

Also, the classes, IR, and PSR with associated methods were added to the class

hierarchy for the ASC simulator.

The two designs have different ALU functionality in that they have different inputs

and operations. The Tanenbaum design has two different components, an ALU and a

Shifter. The ASC combines the functionality of these two components into the ALU. The

method overflow was added to the class ALU and the math method was altered to

provide the required functionality for the ASC design. In the ASC design, messages (from

within the ALU methods) are sent to the shifter object to give the effect of the shifter

residing inside the ALU.

Both designs have several small variations in some of the objects as discussed above.

The various objects are brought together to form a complete simulator via the main

program. Since these simulators differ, the main programs differ. The main programs for

both simulators are called 'cycle' and are implemented as universal methods (in Prograph).

The user interfaces differ in appearance (because the buses and components differ), but the

approach for the construction of the user interfaces are exactly the same. Their menu bars

and dialog boxes are almost the same; this allowed a great deal of code to be reused. These

two simulators were designed by first considering the Tanenbaum design, making 'generic'

classes, and then producing the Tanenbaum simulator. The ASC simulator was designed

63

by taking the 'generic' classes previously derived and applying the changes necessary to

give ASC functionality. This process could have easily been reversed with very little

inpact on the final result.

E. SUMMARY

A 'generic' class hierarchy was designed for the application of simulating a general

purpose computer microarchitecture. A simple computer microarchitecture (Tanenbam's)

was introduced in which a simulator was designed and built using this 'generic' class

hierarchy. Few modifications/additions were required in building the Tanenbaum simulator

from the 'generic' classes. To further test the 'generic' class design, a second computer

microarchitecture was introduced (Shiva's) in which a simulator was designed and built

using the refined 'generic' class hierarchy arrived at when designing the Tanenbaum

simulator. Once again it was discovered that few modifications were required in the refined

class hierarchy when extending its use in another simulator.

64

IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

A. SUMMARY

Chapter I developed the need for simulation of computer architectures at various

levels. It introduced the notion that architecture simulation could be more easily

implemented using object-oriented design and programming. The chapter further

developed object-oriented concepts by giving basic definitions and terminology. Basic

microarchitecture components and operation were then described using an example

microarchitecture. Finally, Prograph, an object-oriented, visual, data-flow language was

introduced, along with a basic description of its syntax and use applied to object-oriented

programming.

Research areas related to this thesis were discussed in Chapter H. These areas

included: architecture simulation for educational purposes, class hierarchy design for

simulation of multimicrocomputers, object-oriented approach to VLSI routing, object-

oriented approach to interactive user interface for microprogram simulators, and work

being done using object-based languages such as Ada. Several of these papers pointed out

that the design of the class hierarchy is a crucial portion of the design of any simulator.

There is a definite interest in the areas of classroom instructional simulators using object-

oriented programming languages with reusable software components and an easy to use

user interface. As of yet, however, there is no work encapsulating all of these concepts

simultaneously. This provided the motivation for this research.

Chapter III showed how an existing object-oriented design methodology was used in

designing a 'generic' class hierarchy to implement the components of the basic computer

65

microarchitecture introduced in Chapter I. Tanenbaum's microarchitecture design and

operation was then introduced. The 'generic' classes were used in the development of a

microarchitecture simulator using Tanenbaum's microarchitecture. It was found that very

little modification to the existing 'generic' class hierarchy was required in implementing the

Tanenbaum simulator. The design and operation of Shiva's ASC microarchitecture was

also introduced. A simulator for this microarchitecture was implemented to further test the

usefulness of the 'generic' microarchitecture class hierarchy. Once again, only a few

modifications to the 'generic' class hierarchy were required to implement this simulator.

The design and implementation of the two simulators, including the user interfaces, were

also discussed.

B. CONCLUSIONS

Object-oriented programming provides a natural environment for modeling and

simulation problems. This is because the implementation details are hidden, allowing

objects to reflect the real-world environment. A careful class hierarchy design is,

however, essential to the development of any object-oriented program.

'Generic' classes can be created to simulate the various objects found as components

in most computer microarchitectures. Careful design of these component objects allows the

reuse of the code for many different simulators. This was demonstrated through the

development of simulators for two different microarchitectures. In implementing the two

simulators, it was still necessary to write a 'main' program that puts the various 'generic'

objects together to form a complete simulator.

It was also found that components like ALU's, which are peculiar to each

architecture, require complete remodeling, there was very little code reusability. Parts of an

ALU model can be reused, like adders, but the control signals are normally different

enough to warrant a complete redesign.

66

Each simulator required slightly different user interfaces; however, these user

interfaces had almost identical menus and functionality. They only had a different depiction

of the buswork and components.

The microarchitecture simulators were implemented in Prograph, a visual, object-

oriented, data flow language operating on the Macintosh. It was found that although there

was an initial learning curve (to adapt to the unaccustomed nature of the pictorial syntax),

Prograph made the implementation of the class hierarchy for the simulators relatively easy.

Prograph's application builder (used to generate user interfaces) allowed rapid development

of the user interfaces. Another advantage to Prograph is that it is relatively inexpensive and

readily available.

Shiva's ASC microarchitecture simulator was demonstrated to an introductory

computer organization class studying the ASC microarchitecture. The class found the

simulator to be quite helpful in learning the concepts of the aichitecture as they could trace

through complex microinstructions in a short period of time without having to keep track of

all of the parameters.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

There are several areas of research that logically follow from this work. As is often

the case in research, more questions were raised than answered. With a basic 'generic'

class hierarchy designed, it is possible to pursue experimenting with 'families' of

architectures. The object-oriented approach should prove to be ideal for this too in that one

should be able to implement the 'lowest' member of a family (such as the 68000

microprocessor in the series of 680x0 microprocessors) and inherit the features of that

architecture as one moves to other more advanced members of the same family.

Even though this research was performed using Prograph, which was found to be an

excellent language for the development of these systems, it should also be very interesting

67

to investigate other object-oriented (or object-based) languages for implementing

microarchitecture simulators and comparing the development effort with the results of this

thesis.

The simulators in this thesis used text files representing the object code of the

macroprograms and microprograms. The micro/macroprograms were assembled by hand

and represented in the text file using ones and zeros. The usefulness of the simulators can

be increased by developing micro/macro assemblers which would generate text files

compatible with the simulators developed in this thesis. It should be possible to use object-

oriented techniques to develop 'generic' classes which model various assemblers for

different simulators.

Although these simulators were very useful for classroom instruction, simulators are

most often used in designing actual systems. For a simulator to be useful, it is necessary to

build into the components some automatic monitoring functions. An example would be a

counter that determines how many times memory is accessed for each macro level

instruction execution. One could also include in each object a facility to maintain an

'execution history' that would record the usage of components and the frequency of each

component's use.

As previously mentioned, a new ALU class had to be designed and coded for each

microarchitecture implementation. Research into designing a 'generic' class hierarchy in

support of ALU design would be another area of challenging research. This would require

the specification of control signal inputs, functions based on control signals, and status

outputs. All vary greatly among different ALU's.

With growing interest in multiprocessors, it would be logical to persue

multiprocessor simulators. This would require investigating timing effects of all operations

68

involving each component. After obtaining timing information, new data structures will

have to be introduced to account for timing constraints.

Finally, the development cycle when using the simulator to design a microprogram

could be shortened by integrating a microprogram editor with the simulator. Presently the

programmer is required to write the microprogram, load it into the simulator, and then run

the simulator. The user then has to evaluate any required changes, stop the simulator, edit

the microprogram text file and repeat the process. This could be simplified if the simulator

were integrated with a microprogram editor.

69

APPENDIX A

This Appendix contains the revised 'generic' classes derived when implementing the

Tanenbaum design microarchitecture simulator.

Class: ALU
Superclass: none
Variables: none
Methods: and, or, not, math, zero?, positive?
Description: Represents a combinational circuit; thus, it
has no state. Methods are provided that perform logical
operations on a stream of input data.

Class: CONTROL STORE
Superclass:
Variables: contents:

(array of MICROINSTRUCTIONs)
Methods: load
Description: Holds the entire microprogram. It must be
loaded with the microprogram prior to any simulation
execution.

Class: MAR
Superclass: REGISTER
Variables: none
Methods: mar
Description: Contains an address of a MEMORY
LOCATION within a MEMORY BANK. The method
mar accepts a control signal which determines if a value is to
be stored into the MAR.

Class: MBR
Superclass: REGISTER
Variables: none
Methods: mbr
Description: Models the data interface to the memory
bank. The method mbr accepts a control signal which
determines if the data input will be written to the MBR.

Class: MEMORY BANK
Superclass: STORAGE LOCATION
Variables: contents: array of MEMORY LOCATIONs
Methods: load, read, write
Description: A read or write to a MEMORY BANK
implies a read or write to a specific MEMORY
LOCATION contained in the MEMORY BANK. The

70

method load is used to load a user program or data into the
MEMORY BANK.

Class: MEMORY LOCATION
Superclass: STORAGE LOCATION
Variables: none
Methods: none
Description: Used to describe the contents of a location
in a MEMORY BANK.

Class: MICROINSTRUCTION
Superclass: none
Variables: instruction (string of bits)
Methods: none
Description: Defines data structure that describes a
microinstruction.

Class: MICRO SEQUENCER
Superclass: none
Variables: none
Methods: generate signal
Description: Simulates the micro sequencer component
of Tanenbaum's architecture. The method generate signal
sends a signal to the mux for controlling logic and
addressing of the MPC.

Class: MIR
Superclass: REGISTER
Variables: - none
Methods: decode
Description: Contains the various control signals. The
method decode is used to parse the register contents into
required control fields.

Class: MPC
Superclass: REGISTER
Variables: counter, cycles
Methods: set, increment, jump, set cycles,

get counter
Description: Models a microprgram counter.

Class: MUX
Superclass:
Variables: none
Methods: mux
Description: Models a combinational circuit. The output
is one selection from many inputs.

Class: REGISTER
Superclass: STORAGE LOCATION
Variables: . none

71

Methods: none
Description: Defines how the data is represented in a
system, (i.e., how many bits represents a register/memory
location).

Class: REGISTER BANK
Superclass: STORAGE BANK
Variables: contents: array of REGISTERs
Methods: load
Description: Similar to a MEMORY BANK.

Class: SHIFTER
Superclass: none
Variables: none
Methods: shift left, shift right, no shift
Description: Models a combinational circuit. Methods
take a binary input and perform a binary shift to the left or
right.

Class: STORAGE BANK
Superclass: none
Variables: contents:

array of STORAGE LOCATIONs
Methods: initialize, load, read, write, binary read,
binary write
Description: Defines data structure and methods for
modeling a general storage object. Allows for access using
both integer and binary address references.

Class: STORAGE LOCATION
Superclass: none
Variables: contents: string of bits
Methods: initialize, read, write
Description: Provides methods for accessing
(read/write) & storage location in a memory or register bank.

72

APPENDIX B

This appendix contains a sample user session for the Micro Simulator and the ASC

Simulator.

Tanenbaum Micro Simulator:

The Micro Simulator is started by double clicking on the application icon labeled Micro
Simulator. This causes the application to load, the initialization of the menu bar, and the

following dialog box to appear.

Define Registers & Memories

Register Width: 16

Number of Registers: 12

Number of Memories: 20

MAR Size: 12

The user is required to enter values for each field in the dialog box (the above values are

defaults). After all values have been entered, the user presses the Enter key or clicks the

OK button. In this example, the Register Width field configures the simulator to have a 16
bit data path for buses, registers, and memory. The Number of Registers and Number of

Memories fields configure the simulator to have the respective values simulated. In this

case, 12 registers and 20 memories have been selected. The MAR Size field specifies the

number of bits the MAR will use for addressing the memory. These bits are the low order

bits passed from the data path to the MAR; this example specifies a 12 bit MAR.

The Tanenbaum design uses a set of registers, including general purpose, special purpose,
and constant values (registers 6, 7, 8, and 9). Register values can either be loaded into

73

their respective registers individually by using the Alter Register command (discussed

below), or they can be loaded from a text file by using the Load Registers command in
the File menu. To initialize the registers using a text file, select the File menu (click or

command-i), its choices are shown below:

Load
Memory

XL

Load Control Store
Quit NQ

Choose the Load Registers selection (this can be done by either clicking with the mouse

or using the command-J key sequence). This action displays the file selection dialog box

as shown below:

It Micro 6.1

decrement.exe cm DirectDriue
D program.asm

I live . (t
0i stack.asm 'e

Open

Cancel

Select the name of the text file that represents the desired register configuration (in this case
register.set). There are no restrictions on naming conventions for any text files

associated with this simulator. The two buttons Eject and Drive are disenabled (cannot

be used) because there were no other drives mounted during this example. The contents of

the register.set text file is shown below:

0-0000000000000000 Proqram Counter
1-0000000000000000 Accumulator

74

2-0000000000000000 Stack Pointer
3-0000000000000000 Instruction Register

4-0000000000000000 Temporary Instruction Register

5-0000000000000000 0
6-0000000000000001 +1

7-1111111111111111 -1
8-0000111111111111 AMASK OFFF (hex)
9-0000000011111111 SMASK 00FF (hex)

The text file format for both register and memory descriptions is the same: any number

(representing the location or address), followed by a dash ('-'), followed by l's and O's

(which represent the bit string), followed by a comment The numbers in the text file are

for the use of the programmer only; the simulator loads all binary strings in order starting at

location zero. The results of loading this text file into the simulator are shown in the

register scroll box below (found in the simulator window, this example shows locations 5-

10).

05--0000000000000000

06--0000000000000001
07--IIIIIIIII

08--0000111111111111 :::::

09--0000000011111111
1 0--0000000000000000

Next, load an object code program into the simulator's memory (this is a text file

previously saved). This is done by choosing the Load Memory selection from the File

menu as shown below (by clicking or command-L key combination):

Load Registers XJ
Load Control Store

Quit X Q

This causes the file input dialog to be displayed. Selection of the decrement.exe file is

shown below:

75

lgMicro 6.1
E) ,,* . .. c* DirectDriue
O program.asm
o stack.asm Ie(t

Open)

W Cancel)

The decrement.exe program is a simple program that loads a constant '4' into the

accumulator, pushes it onto the stack, decrements the accumulator value, and continues
four more times. After completing this task the program remains idle by reaching step '5'
and then continuously branching back to step '5'. The text file of this program is shown

below:

00-0111000000000100 LOCO 4 Loads the constant 4
01-1111010000000000 PUSH Push AC onto the stack
02-0011000000001100 SUBD MEM[121 Subtract memory loc #12
03-0101000000000101 JZER 5 if AC - 0 then PC :- 0
04-0110000000000001 JUMP 1 Set PC :- 1
05-0110000000000101 JUMP 5 Stay running idle
06-0000000000000000

07-0000000000000000 **
08-0000000000000000 **
09-0000000000000000 **
10-0000000000000000 **
11-0000000000000000
12-0000000000000001 Constant 1

Now that the program is loaded into the memory, it is necessary to determine where the

stack pointer will point (recall that only 20 memory locations were defined in this example).

In this example the initial stack pointer location will be initialized to '11'. This is done by
using the Alter Register command under the Controls menu. This operation is shown

below:

76

I

Def ine Memory
X D

Cycle X S

Single Instruction Xl
Multiple Instructions XR
Set MPC XM
Run # of Cycles XN

Selecting the Alter Register operation displays the dialog box below. We want to

change the stack pointer (register 2) to a value of eleven. A 2 is entered in the Register
Number field, and the appropriate string of l's and O's are entered into the Register

value field. Press the Initialize Register button to enter the value into the register. The
dialog box will remain displayed so that other entries can be made. Press Done to remove

the dialog box.

Initialize. Registers

Register Number. 2

Register Ualue: 000000000000101i

At this point the user program is ready is ready to execute. Execution can proceed by one
of several methods which are selected from the Controls menu. The Cycle command
causes the simulator to execute one microinstruction. The Single Instruction command
causes the simulator to execute the necessary microinstructions to complete one
macroinstruction. The Multiple Instructions command displays a dialog box
requesting the desired number of macroinstructions. The user enters this value and the

77

requested number of macroinstructions are executed. The dialog box for this operation is

shown below:

Enter desired number of Macro instructions to execute:

1OK

The Set MPC command of the Controls menu is used to reset the MPC to an input

value (to alter microprogram flow). The dialog box for this operation is shown below:

Set MPC

Ualue:

mmow

The Run # of Cycles command of the Controls menu displays a dialog box similar to
the Multiple Instructions command, except the simulator executes the desired number
of microinstructions.

The sample program can be run with any combination of the above commands. The
diagram below shows the contents of memory after the decrement.exe program has run

to completion:

78

00--011 1000000000100 in,
01--li 1010000000000
02--0011000000001100
03--0101000000000101 i1i
04--0110000000000001
05--0110000000000101
06-000000000000000
l7-00 - I IIII 0
08-0000000000000010
09--0000000000000011

o--ooooooooooooo00oo0

Referring to the above figure, it shows that the numbers 4, 3, 2, and 1 were loaded into the

memory locations 10, 9, 8, 7 respectively. Notice that the first location loaded by the stack

pointer is 10 (recall that the stack pointer was initialized to 11). This is because the stack

pointer is decremented before the value is written into memory. The above figure also
shows that location 7 is highlighted; the simulator highlights the last value written to (in

both the register and memory banks).

ASC Simulator:

The ASC simulator is very similar to the Tanenbaum simulator. Most of the menu

operations have the same effects. The following is a sample session with the ASC

simulator.

The simulator is started by double-clicking on the icon named ASC. This causes the

application to load, the menu bar to initialize, and the following dialog box to appear.

79

Define Memories

Enter Desired Number of Memories:

I20 I

This dialog box simply initializes the number of memory locations, in this case, 20. In this

simulator the bus, register, and memory widths are hard coded to 16 bits. All of the

registers nave specific purposes, as discussed in the thesis body.

The next step is to load the sample program into memory. This is done by selecting the

Load Memory command from the File menu as shown below:

This action displays the file selection box shown below:

80

D ASC Design Notes :DirectDrive
1D ASC.micro

Sincrement.macre

D programl.mac
D program2.mac

Open

cancel

Selecting the decrement.mac text file as shown above (previously saved text file) loads
the text file contents into the memory. The contents of decrement.mac are shown below.
This program loads the accumulator with the value '15' (located at memory 8). It also
loads index register #1 with the value '5'. It places the contents of the accumulator into the
memory locations 1-15, then the program repeats. This simulator uses the same type of
text file formats as the Tanenbaum simulator. Similar actions can be executed by choosing
Load Control Store from the File menu. This will load a microprogram represented by
the text file into the control store.

00-0001000000001000 LDA W/MEM[8]
01-1100000100000111 LDX INDEX 1 W/MEM[7]
02-0010000100001010 STA 10,1
03-1111000100000010 TDX INDEX 1 BRA 2
04-0101000000000001 BRU 1
05-0000000000000000 **

06-0000000000000000 **
07-0000000000000101 CONST 5
08-0000000000001111 CONST 15
09-0000000000001001 CONST 10

At this point the program is ready to execute. The ASC program execution controls operate
with the same functionality as the Tanenbaum simulator. The Controls menu is the same
as the Tanenbaum Controls menu except there is no Define Memory selection. This is
because only one register can be altered, the program counter (PC) register. The PC can be

81

altered by choosing the Update PC selection from the Registers menu. The dialog box
resulting from this selection is shown below:

Enter Desired Register Value:

I0000000000001 111

Using the various controls (as discussed in the Tanenbaum Example) the program is then

run to completion. The memory contents after execution are shown below:

06--0000000000000000
07--0000000000000101
08--0000000000001111 MH
09--0000000000001 D1 I
1110--0000000000000000

I12--OOO00OO000011 ill

13-0000000000001I It I
14--000000000000111 H-

15--0000000000001 111

Memory locations 11-15 contain the value initially loaded into the accumulator 15.

Memory location 11 is highlighted because it was the last memory value written to.

82

APPENDIX C

This appendix contains the source code for the Tanenbaum design niicrosimulator.

83

pemo
£I~M~inw Sl MOM be"M g*

mmq e..... .Runa

.v

au
Y

MI

VI
T

moke
feel~
v

-mu

so

a- alom.mfo "t o a

Onmmm CohmmN- Mm we wmew
[Mow"M~ ~~~e oa"Atso f- mmo WC. .0..

Iftw - -W mo WC mm,masmom -wamm Cm
MOMmm mm.O amm mem
Onsp , "M Ifm. wman.

mil.lwi. -am. mter d twosmmm um
OWN. ~ m m&%m-..

==ft ~ ~ am mmtw m mm

"I"It Ohm.. Alm
ma .mm mmv wmm Qm ammm mm.
-gsfti &-woo- "NowU~ 0m. A."

tmm" 1". wiI. am: m.o mmtto".su oa

a-.~ 11 OWN - smm "woom
m V 40mm eam(s.m m mmfee mm. ,am mmou. twoma m 1mmm m m

"wa momm lawma

wammb mmo~

flm w m tmmf. m h W
m am~m OWN ma' " : A .m

No mm mem, afmm &mom " i.

so" Wmmi WMM 1008 0m Vw W~
M~.am. o kno vow 1m fwmmi

ape..mm bm m.mm m no UJ E mOwo potf

"m wk ft tow lima mm= . m tio
otma. cow

U merl text I1a

NOWi ~ t

I..e m n, t ~a u

* set tout 2:2

* 116/Set MPC I:1

* ./let aptc 1:1

a I Os.0 mu in" A" is. low is

* ,un/ltlllaze register 1:1

52Ed T.0

93~q-12

*simm/register tell done 1:1

62 mqp -

0. 0eg. Va

* a- ?f, is Is :13

* ./ehliia.valus 1:1

M-0 Si S*s9bw

* IsIm/gfa :

mm, b t.a- I 01I

C. m fl listO

YKu A. i.is 12

* Imiuod.I.-screm In1 U buil-Mme 2:2

IZS

.wa

'.5-S.sor

05s...s

* ,amorooilumrg 1:1 U buM-Hues21)

* ,Iu11110uSU1:1U builo-Idas 2:2

54*4

'S..",

240a/B0t wuindow 1:1

* um/gele-,gev 1:1

FOW~ .
~ /eta :

1. M

SIW.. s i,,~S

A m^AU ~ m tI g N 'e

ANM* OWbw ged

SI m S A I. InII,

* .m/aama rev tell 1:1

* S1amdaeStriual 1:1

V men

C""* 10.0

01b Thw Asoli s. IIm

mIe/mar 1:1

v MBae1

*., -aU b m. man

-MRS/mar 1~2

am so".

ti s P h I ls l

regisgter

V strne.isteio

k.11 OwaslPnsf odo
Samp uLemea 0.MPW

*storig ne ctiomirhad W:

*storage mceteion/file 1:1

Iia us"m Th qISUI

storge teeetlall 1

an Pems Nu

-- 0 lm

TO u*mmo o
II.b $100

WI. -M a N.

Ustorage Wocusslaui 1:1 Ubead met 1:1

l lriWatas

mmi

-1 Ornvos N.,g TwA ."i *

UMSi/ecade 1:1

v "PC

we

ING son ..

". = ue mm. 6. e

00" ouoaaaGo
.. eusow MOM mu.%.a ~sne

__o .amVNW
s from Dwme

MmOM w se VI"

" Pu/btrengt In1

atftewMoeWeliseIj

UMC/.eIP t1

U WP19ot counter 1:1

sheinter

~I

at G~w am lb A"e is. "in it"

*skifter/shifter 1:4

* shifter/shifter 2:4

* sbifter/shifter 3:4

*siVter/sitter 4*4

WIN

0 shifter/shIfter 2:4U 0 ight 1: 1

U shifter/shIfter 3:40 left 1:1

6 , is= TI M 1. I M 133s

0-0 a a "Wookolval
on ~a mesMo

(9'

0 t am-o

amesI mp on

so is Tom, 0.

114.1imtIS

~j~L Eilj

01 m ,1e L -

a, FmS IS. I A.6

ALUINOWO

) f.O&Ml.I: A

* Il/math 4.5

UPC mam.~

I

9. 5 0 ALAWM

- b

91 MWMOTAn$ I& MM 1*3

OWK/bit and 1:)

* LV/bit sea 1:10 UNot ad 1:2

* LU/bit and 1:1U Met and 2:2

IF

*ALl/bit not 1:1

* us0m1,01U add 1:1

pAs S AL

am

atomom mo e i. iq *e

I~ ISIn

* Ll/bit mII 1:1 X md lit 2A

ALI/bi odi 1:1 a mdd lit 3.9

fl L89lJ INll I**|a So Pomms UsD

* Ll/bit add 1:1 U odd hit 4:9

PALM X I I

:16/i mi11Umd a 2

MINL/bit add 1:1 admd Hut 2

TRIM N

MAR/bi add 1:1 ad mN ot .2

ova xin PALM XMI N1

a LS/vIt ee 1:IU a" Mgt 0.9

* I/it add 1:10 0U1 l it 9:9

u6

ECOMM

I'" .mum

V kgauvge

Vm

-i
s~mPM

ow
vFj M

pa
Run

IMC

(MI-AU
v

Am"

V l IfmT%0 kI s

V Control stoe

*control toe

1.19~ ~ ae wws PO N .no

Na .eSr ,teefse No

*.O geNOWe gtres Asmle 1 u

a-l'

*central utseo/adf locatlon 2:2

a oumu OTiie IAlf it. UI lami

U semrsi stoe/lade 1:1

U estrl stos/lod :1 rea g-Namees 1:1

login.

.,.m~

&I emsinsigTwn nt." e

coto setarge/food 1:1 W load storage 1:1

Ucentral store/load 1:1U reed Uses 1:1 Ubuild microinstrucion 1:1

cow~

ALMtrleet/mi ~

onim

2i - 1 qI.UI1

ab mm.WI WSW. a t

minWITIIA "%.t~mm ~

pgo/e degm pg vee 4 yw

U le/get ag of Near o op! :

Time/lot dog of uast 1:1Ua of ap :2

to .0 4lo, w

a let leg" Ism gear A" is sep2"

*Time/got mooth some 1:1

*Tima/gt dGe sa me 1:1

*Time/got gear 1:1

SIlme/get mouth t:l

* U lime/get heow 1:1

LI bi~ Tm. eq I. 12 I1

a Time/get seond 1:1

* lime/get dtme 1:1

T ime/get tie 1:1

s toeeg beak

&Ise a, atssts n a

s torae. book

CAMM:.,M Ram bg -iIb be m

IM "M W : T@L@e e O. MO. N. T.

OLV f tue I e CAt be; Lm

C~~.e b b C." Sae b
SON.'"d alur....,.OPM C-m WIA Lbe

Ustorage bask/lose ul

-- - -- - -

U tiegee bang/leeg 1:1 get-fII*test 1:1

SI R be1 1Sq. I&M 32

stoage bonk/load 1:l1 road Usmes 1:1

is

tals mvow

Is-

un 0

IMl .1.

Ustorage beat/load 1:1 Ufood slorage 1:1

Ustorage bemrroo 1:1

I55C

MIfiq a. Mi 1bI~

* tores* bookimirtte 1:2

Gom he La

Tog x~ I
ft 4.- a

a.."eN.S

s tores* book/wtle 2:2

m Iwapg book/lalt 1:1

S torage 10801i~ist 1:1U bolld store#* 1:1

cieab 1. An it. "v I"l

storaSge book/Sik-read 1:1

wame

Cf-

s torage bomk/lIN-rood 1:1U sum Momgan 1:2

*storae book/I#-re 1:1 a sum integers 2:2

*stere bes"MIN-arrts, 1:1

T V I
can anA

COMM If we

To 40 n"

Cl m hs 9IS151 r

Ustorage bk/3lI-wrts, I:IU 0am integers 1:2

Ustorage book/l1Nri, 1:11 sum integers 2:2

V momerg bosk

D.~ M.. an.. Mom &Avw t Gomm f#

bo*som a a noAMm.~ f

U mmerg book/read 1:1

amid

M5. *N

nm
C .Z

liv Owb UMS-

&I 050 MOO Tft 'A it. I"Y I"

*memory bea&/reed 1:1 U som Ilgers 1:2

*memory a5mM/fead 1:1 $asm isaen 2:2

*mamory book/witae 1:2

ANI-I

meor bekwrsZ

5- "i "f12

*Qw boos~ mk/write 1:2 sun Inegers t:2

*men"q beak/wite 1:2U son Integers 2:2

*GW booqhsk/load 1:1

Sikre sosuencer

* Ue sooumer/fambtr.. uinal

lb.£qU Unz

* .cre signaliue 15. 2*5

*nl a l' eumsise..s5~ :

.DWAI IN&I

* icie se.aeerigeseamI. sigal 3:5

0 okra "wommasrigeersto signal 45

*145I

ow COO 0001 a Do
o f.soi

Lo,.m u.

-a

MON41/man 2:3

0101Ij

0 reitrUN/ h 3:3

*~ Sqes,

LI01 S 15 1

regihster book/igsa 1:1

&I GomM"T1gApi ma

- som so m. -a amo -

Um~nf= 000. bommam -fftp

OW-N d~aw now" aa . f. A

ONOWm Eon" ~ som bftw -m mm
a dmed eomm a________WO alla sw4 a IVd

aro MAsI £ s.$ aem.

so-10mas em I N fm al

-90 amw amm ob m

sm"- ins lo LonU - 0 loofto

*awt~~ ~ ~ ~ usasnwlCN W 10 a

S afebimywsis1.

Cow~ ~ ~ ~ usbl gobl:1,ac o

OBNMNN:~a am, a* evow wowl Wo-0I15m

U uin users 1:1

1 ~n ar :1 umt gCFO*$ 1:1

M" owg e 1:1 m uetro egels 1:1 a ws. ww"su 1:2

1_ __ .11 7:~~

m of snre I:1

uUle macre 1:1 U ira elcele 1:1

U m utle c~s I:1

Cleo*$s 1:1

im ow Dow" e 4 NW m nON

&I iNOWNO Th. s A" Ite "N 14

SItw :IU be"o Mgt 1:1

*le tg 1:1 Ube" at 1 U BCbef to bm 1:2

lobt-Diam t:t bw mil 1:1 oarmf to b"t 22

*got gihtrit 1:1

LOW Cow:

&I 4WfA MWo I~ *, UIL ELm

U CFOa 1:10 let Main Islioen Wfud@W 1:1

wew

pelfrn..

UPC,.

a" 8,e:1 $86916182 21:1

I, . A

NOW mlb q1. W 4

* epa. 1:1 a s.ailes 4 1:1

&0.6 .qae

am WOin Som
p mal'al

6oLV Po*w~.~I.uni

cye I:1U GsukpI I I:$ mom cost 1:1

cyl sps :I subepele 1 1:1Ua att BI.,C 1:1

C OC I

E ~ IA eme

* opt. 1:1 U slept. Ie I:$ U nth coat 1:1

1, VA CO C PO Pi mnM)

&I aset A TWA An is. "1" 1419

*~~~ ~~ 1pd se ~bd i Uudate teatrMUStIe 3:1

* epck 1:1U subegelf 2 1:1U sedate 501 waleS 1:1

g ple 1:1U oaubql 2 1:1 Usudate Coeatmr 1:1

a 31 : lacycl 5 1:1 @"at*.1 MAo 1:

am/-

we!

111.1eq is. ,we al

Seic :0 busqele 3 1:U udate dept 1:1

UV VAa-,ru :

be de .

lam- b* lgIi

* hierg-stri 1:1 U bevg-rntil W:

* h~aritI~g1:1 bimrg-escU 2:3

* bIer~utflg 11 Ubbhary-oem 5:3

0 Stl-bel 1:1 a aseff-biaeu 1:3

E6llgbue~tIU.tummu :

TWA~ S ~l11

U sttmg-laaq1:1 a *ScU-biaswi. 3:3

Er2

4, "tow m
03 au. go"
p fteo se

deiilul :1U f 1:1

wm

&I owm Um aA I$. INm 1419

VI

" u Sht#ere S m 1:1 sllBt :

* Ibet micro son 1:1 U iseiau TMal 1:1

r-
mem @@

a: me-i ORPAL

tow on-

U boww w MiTS liE 1 U Wehlq E :

APPENDIX D

This appendix contains the source code for the ASC design microsinulator.

133

Class

-o*"bem"f.f

ma. Ea.n "a ONO upmm

VPSI

-mm C. ,Z

*PSM/d@meetIn :

~~mam
Rnom, cm -W alnf ra

ob, ~ ~ -nom aS so" U. T won

I I IUI I If I:U

V MIll

V rolmer

rogiter/ro ae Ino

Amo ft*4ufrnd M

II

V Itsg MI I I II I I II II.

s tifuge loceato

VAM smp Lad ommW
Sowp iM a SOI

*storage loion/ad~t 1:1

*starge leatoll//blt 1:1

I'm Oval
be n- Sim To NNW

dom a in -tv a.

* teose le.UeWtina 1:1 U build Net 1:1

-~fO PIm A" Iq t IM &W

0 336-l ISISUSA

m esf ele

af am do~f I- Lmom Gomsn~cm a WSO

*mII/iledI 1:1

ia t

maO ai am am

v MPC

i7

DaWCmpe iNM *Km fee loom d -

O Deme =: a PI

UPC fte PM
"S oE WA wa P

emS.m

*301 PW Pa. A" 16 1*0

a NPC/JUU 1:1

* WC/t u:e1~

hAdM - * An It IUI

MAL

v I

PA-

4
wG.., O~

d V
FAge.

W A

IA-IL

Vmo

a..'.Pt..a.,"ma

bea c -m do" ON a
W4~ ~ ~ am so weo-mlw= oa

own me sm

owame - - my

alya- mms a-l Avomy o

ec ... Mmy -fn w a n e..,sMObe Oma- La -M m 0

suawsna myt~a am mowm 1* owmy "am " am m

1.111..sif., amm eelU , ma my.

A om .Vmm- iO1 am -N4 myod" ON

bam y. m a amn
lomy am mai y bomyo..

too =:o me ON U.-V- NOW HMyn
m m mymygWdVn4U

Dais nooy. mazwema.
&%.& m toe

am ftb. m a m
-NO a" wn f~ em

do1 am e F y - y q

INZan owam lawa myn

onmo Wnt MRm mS moe - mwy.
0- cam PC OWS my. my

"ft Of p M mydO LO 0d am
mmsp al WPC Wam oa go go"

0.0am Ammm PC ft" ow

ku a/gat text 1.2

Anti ms A". eis. lmt a.?

g/set tent 2:.2

* im/Set NPC 1:1

'hSS.~m -

*1.

* imet age #:I

wc maim

ii pa ft~ An "L "MI so

U .I/jaltisNa. roo~ster In1

toi

sa .AMw -

St13 t -,

U 11
dt-e101:

a

.oiso .00 P9 IM*P

LM l8n SINO

an 4 , ammsts W-IO son
* mminbe

-~ Mmm-

a sim/mwusa Puses t:I lsitiouto memeog I/s registers 1:1

5.. ofto IN"" I

~~me

trum M -M "onu
p u

a sum/insi al hus 1:1U Clear mu iselpielis 1:1

it rom mw 21olie OWf-

AM M FinP A" 64. 65a1 wil

1,4.41 .

.0%.

w-

NoN

~9*fl*
ME.,-Uti

-6104

m ui8iu1d1t.-C, 1:1 Ube"- lMae 2:2

En. al

mgililun :0abad"*.:

*SC m PAan"" 1

US~INUUI-sersU 1:1 U build-k., 2:2

Is

0 SWmSSt Wlidw 1:1

61016"SeW-UMft 1:4

"U go

ass," ftAns

* .imueU""ONS 3:4

IYF4*4

* MiwiV-MhSt

1Is

mcIk 4. 1 . "IN OIn

lo 9~d~iut :

I* iwmdme~I

I0.4o

4W

*sw/UaeS. PC 1:1

PCI

IIf

mm SImos
ftCm-

asd/ga GMls .5:1

fintm &a

AmPG f veI.O l


~~~,N" book mm

mm now 5 o

W .ON b*Dablero ladem 1:1

mis

~ mComm

Om' central

AsiowI PM. A" 10 111 "si



Gmmm a Glo an

mmm.. AMM GW SM a amoeso mlm Gmm WMm &
ml I goom1m ann t ome bowa

WAI MIN MO dommd~ OWm MMmmmmm

-l Cmmunim au INCMPi ~c
bM dm SIONm Osoo" a....a

Ove Amm mems G~ 9601

c uOm PAMm woo Molm
UM 'm em God" m n

Umicro Cmt"WEI/m 1:10 UMNS TW(0mgO I f~kreobstrocUi 1:1

To a m

i~mmm Gm~m

U micr cbstreulMIS 1:1 F SCO.. sTWO I MMicolIutlo 1:1 U 000MIEMC db~Mg 1:1

Sol Imm

*Imi pi A



* aliv evotral/mcm 1:1 Proess To* I Mkreims~tcee 1:1 Ubleach 1.-9

TINE

be .1S

U SVWC 1lc eIs/e :IU Process TOWe I Microiustution 1:1 Ubran& 319

SINet w

ACI t fA q w. MM @



* mtr eetrl/cv 1:1 U rves, lose I NliroNlmUORt 1:1 U rank 4.9

c m 0

* me geelres 1:10 U Stes.s TV$* I Mitrojosetmeum 1:1 M breach 51

cT 0

IM ..

I'a so I o?*.& se

mkm womw~wo 1:1 Fres P~w I Ns intwi 1: ba"..



0 alum eeattI/flIC 1.1 UProces Tgp. I Mirinstruction 1:1 breech 7.1

a .. Mmw a

4.. m b**.**

w mire costul/acune 1:1 P roess...s Igm ic eurmdstructiom 1:1 Urac Mln~t

Omirs ea rme :1 Proess gw. I iresgut 11 bran"131g 2

W. M

ASII 14. A" t Cl02



W mere lsatlmcm 1:1 Proncess Tjjpe I Microinstruction 1:1 Updt Dlim.splhll 1:1

II S~

okmira contral/read cmitral store 1:1

ac macea..o/08 et :

Uor mictraa Notes1:1I pSwo. bet os :

o"mCra ce"Iral/889l Sets In1 U gasrsto batl dots 2:8

ElirlstalSa aa1: eeso ullt :

mui1~m No"j*h

awl Pa-KA t lA



* uacea/, ki 
I 

.. ut etUs5

i usal seeolseeot 
ee at 

"

*ire centr/most Dotsae 1:1 $*aerate belt dte 3:9

* mg, udict oel/lslet Dta It U seate bail jte S:i

oa 9 sal/$as get* 1:1 g enerae bes toet SA

LL
41 ,f a PAL , , ,



mmmi cst~uroot e 1:1 a fsmrst. 6681 date 7:8

ak* momIN elSlIk 9eto 1:1U gegerete oo at e 6:8

=ip
MkU tle5rl/uS We 1:

* aluM cstrUM/lu deta 1:1 U geerate 668s igefe 1:5

OACI P" PIL a" so in



* il.ggsUft Bets 1:1 gooegrl bes lus le 25

* alre csterase2 Noe. 1:1 U somne bus2 miguel. 55

OL

a alam smtiimm "toe 1:1 a geamte bm2 sis 4:5

l~mE

* ir malow2Il :1 mmet m2mimb5

V *W1gmO

4'psF geI Ma



*~~~~or micraBUS selsl. ignals 1:1rtabS gal1:

San .

a micra, costral/Ba3 Sigmals 1:1 geert 3@ffSI baislgs 1.

ft.C IW Act an V1. 1.1 5



Mie 61f.str1/UuSS Signas 1:1 Ugenerate 6uss sgals 4:8

witi

X.,..

* ie costrellIusS Signals 110 generate basS signals 5

l. VA"

;V* 1, 01S/g5Sgas11UguvsbsSsgasI

'Mu .N

5 1- uPi-ONA M 2



* awtcre o ce si epul 1:1 Ugenerate "83 8lga" 0:8

* mcre £sutf~8*0 Signals 1:1 Ugenerte 6403WGS ulmi8S

RN E - ~myf U

Ufr micr s3 lL S igl :0gmneate bI:, ksft

ommew5~ omi

McI reft 54 4.ls 1:1



Mir kfteintroil/LS Sleef 1:10 UOOI gemut il" 1im5

E

*mocrs coatrol/ll Ussenll 1:1 U generate Oft 098615 2.8

b Pa AuL"

a Elara semlruU. signals 1:1 U geneatei aft lgmais 3.8

ofw m cr stral3UN Signefn 1:1 Ugenerate aft signals 4.3

Ukr mcs ftal/04.U lignals 1:1 Uenerate alt signas 5.*3

iR~i~ GOP

TOWn P. q45II5



s* r mcsr m aa *i/l& lal :I generte aim algaai 6:0

*micro amir*V/AL sigl 1:1 a generate ama 66alga 71

P~th Sol

N*W ot eal/11.9 Signals 1:1 @*u*makeat aigooulgao 1

1a1i t "66p" M~

okmira cunical/KU Slgauia 1:1 aU@$"to 0 NIP disa 1:1

It mm mwmm m

*micre caa&sIMosarV p aa 1:1

P&M-no f Am In.Im 



*micro .mt.U14MhM~ Sigmel 1:1 U GOuoi UMU uignhh 1:4

Mkt alm etreh/MeMer, Signal S 1.1 Ugeerate mweri signals 2:4

*Micro coefe~omerip Sigmtel 1:1 Ugenerae mommg signals 3:4

01

V Obtner

mittuer

*,,il., OLmmsA PON. M. .s

AIDIPO Pit AM I " W



$04hter/obliter 1:4

* gbgftrl.Mi ter 2:4

-'.I

:P.l FAN

a.-4

skinifst/slter :

IPM

0 shiflfo/obif er 2:40 right t:1I

* Uoltr/sufftr 3:40 left 0:1

eAM Pum ft. A" iin am



hlam AM~e co 
U H'TA

IS mm wo WW anm hesom no--.I
saw~ It/m baoo: N

TRW St PALM IX e PAM

PALM X
rame

* AL/M.t 2:?

T T T-
PAL@! N PAL PALM PALS PAL" N

iISO#

POA

AM Put t. A &A



N LV/mtb 3:7

Flu PALI: 3 AAFAlpaLE

ramn

A LUIRIoth 4:7

INAM FAUN U

FALSEPALM

AIm PM PO A"N torl &41



PAL! PALS VAAMS Alg

FALSE

* I.11/111th 7:7

* EU/Moth 4:?7 Cheek bis IS 16 2:2

SII/high bit 1:1

AINCI P O $4111 643



* LO/zet. 1:1 U Check ZUS 1:1

B LU/hit a"d 10

* 11/bit Gad 1:1 m9st @ad 1:2

* mu/bet sad 1:1 UNot sod 2:2

* EL/bit set 1:1

TkA o."



* LII/lii! SHd 1:1

* II&U N/bit add 1:1 U aid Met 1:1

FAVALVE

I tU/bit add 1:1 a odd Not 2.i

PAL.E w

SEL/bit aId 1:1 id Ulist 4:

VALS

i ILtebit odd 1:1 a add uit 3.-q

MBnI di I AM IU



* 111bU/S odd 1:1 add Not 7:9

111.11161 add 1:1 U a"d Not :

UsL/bit odd 1:1 a add Nat g

*KU/Seams.w 12

Am' ao *- 4i s



SLU/oUerview 2"2

7bm t ft son" a

7 control e.ra

No*

centrol eleru/red 1:i

I ' ...., ,

"mI sum ftA SSW.aa



U g.M,.I sterelos location 22

U eeagl stars/boad

01.1 am 

4.

a Comme steraso 1:3 segt-Im-tamI 1:1

@Sass a

to 0

MCI ME I.lii6*



cotet~ stermitma4 1*1 a read Votes 1:1

'.18V

I.- - WI AS

cme m"

.... vacbm..

-
'04.

-6180

*OA SUtmI.Mr/mmd 1:1 Load Store 1:1

Savm

U emtrul store/hat 1:1

ANCIP11 ft~ &M 14. SA



U eeatrel toterlm lead W:

stoest bsi

am Im-m libe MA, - ~ e LM S

OM-40 Lbm IM No NOe 1-
ON! so

O1crl bookloo 1:1

I-A

11-A

Am pm NIL A" U. "I" "I



U liingsbeakiSAC1:1 rea meintas 1:1

so~a a C"a

Ples' alaa

I., CI

,...lse

nAwl Pol P A" is. "I" sot



U .3133 beav/Wed 1:1 l ed sterege 1:3

* lemba/reed 1:1

-S.. e wo

.1 Vlg 

b./1l 
3.

TAam 

-Nst

* eurege beak/mm. 212

La4

ASPW PA It1 61as



bos sRe.baaMt :

dammo

Ustons book/it 1:IU bow stouep 1:1

U It t/§e km&/S-r. 1:1

Am Lamm un .

6

Momp sm ow

sma

Ustersg. bomaBsIN-tae 1:1 s ame Umtemr 1:

AICIC XU LI .IIM



*storage wank/eIN-res 1:10 U* s.integers 2:2

s torage bookiUI-,,t 1:1

v T Y T

*storage bohk/lUS-writs 1:1 u integers 1:2

stolrage bouk/eIm-wrt m: 0 too integers 2:2

A$Pa & A.* 1. 101 am



a ew" book

com UG A"0~

... d NM 19 a" mo" uo

*mmorg book/read 1:1

*mawsq buok/write 1:2

wow wa ow.

"we
11*1N4jEU"

Asl o f,,. ina



0 Mmurq book/Write 2:2

* meMV bank/write 1:2 U sum initegers1:

* memsrg bamflrt/ert 1:2U0 sum integers 2:2

* emoen bemS/baa 1:1

V register book

AecIi Pas q A" is, s, z



reugiuter Depic

alo" - -pm -mw o"

register beak/food In1

#1 i

Acm An Is" w



Owwwwwo aworow on suage

haua semSro elta".ha

4-Fp a m"* - m -Sb

U U Cd"ma a- a-S
-.k Sewwf am*

0 B0m &AN %W amra" bomorom

cup" am asmuls fat" a eG

raw: IN" -olw a

0-00: WAW0 ~:N"a

UbifsF-bt 1:1 ea integers 12



U C0 1:1

*ca :IUa @us Note 1:1

uI3 ENNME
11'22 , 22I 2 -u20WUPl m

.,m A

* iggla 1!I UIts output 1:1

Age, PulTo.A i o"In



cycle :I1 a updIt Nmory 1:1

c cle I:1 u pdate MPC a Dislpla 1:1

o'I , o Emi.

b NN
! I

0 3 oo- *

sun

Woo, so" eai 15 i



Ueee1:1 M NPilate Nomaqv 1:1U update cecek hoes. 1:1

a- Oft van

*' l. agle *~ i ne aiN

Umumg macro 1:1 maci, cgclas 1:1

VA951 * I lenil



Hmmm macro 1:11 me I10 lip icr.omeat 1"2

i mea macro 1:1 i macro egclos 1:1 a oe I* cremept 2:2

U macr uos 1:1

0 sisgie mumr 1:1 P ice ecles 1:1

am SamceeI:

upun m m n codes i:



I-cbior s 1:1

I l@.. UNl

t a i t-biner 1:1 bead lis t bt

Sbt-b log I:1 I bud list 1:15 conver Im to bot 12

AS OWIV A"l It M 1441



*blmeaq-striug 1:1U bimerV-ssei 2:3

* b~erg-ssleg ~l USha.-ocg 3:3

* .UMg-biauV 1:1 U .,eU-binarg 1:3z

AMMS~ 1IK A" is, ion Ma



* .a~gbemru1:1 a osMM-bla" 2:3

* sttmgb~a t: U sef-blmeaq 5:3

i, a s-

* Imilh. 1:1

~~msn".

I, ns La-r

p ~mall

*~~~~u" $weieZ reviOW~.114 gson 1:1

'ism

F-m

W6,1101%

'-'U PON

Am. po b g I.s c



* kiuslus 1:1 a multoe sinews fegieters 1:1

p Now

PC,,. d

d el left 1-1

*del Iont 1:1U leaue 1:1

wimlelI :

4' - g ag ohm 
.0,00.



Ub~ AbOm Si t :1 plpevDw :

Stt

m mo.t Mit4k aSim 1:1 UWM latag o 1:1

d~g. 0

Nebo wleb 1:



two'"t 

t:

ALMab.1:

MM M bL"11§e&



LIST OF REFERENCES

Apple Computer, Inc., "Inside Macintosh Volume I." Addison-Wesley Publishing
Company, Inc. Reading, MA, 1985.

Cox, P. T. and Pietrzykowski, T. "Prograph: a Pictorial View of Object-Oriented
Programming." Technical Report 8902, The Gunakara Sun Systems, Ltd., 1989.

de Paula, E. G. and Nelson, M. L. "Designing a Class Hierarchy." Proceedings of the
Technology of Object-Oriented Languages and Systems International Conference 5
(Tools USA 1991), Santa Barbara, CA, July 1991, pp. 203-218.

Frei, M. "Simulating von-Neumann Machines in an Object Oriented Environment." IEE
Colloquium, November 1989, pp. 5/1-5/6.

Micallef, J. "Encapsulation, Reusability and Extensibility in Object-Oriented Programming
Languages." Journal of Object-Oriented Programming, Vol. 1, No. 1, Apil/May
1988. pp. 12-35.

Mulcare, D., "Object-Based Discrete-Event Simulation of Concurrent Real-Time System
Architectures." Proceedings of the 1990 Summer Computer Simulation
Conference, July 1990, pp. 184-190.

Nelson, M. L. "An Introduction to Object-Oriented Programming." Technical Report
NPS52-90-024, Naval Postgraduate School, Monterey, CA, April 1990.

Papazoglou, M., Pawlak, A., Wrona, W. "Multiprocessor Modelling: An Example of
Object-Oriented Development." Microprocessing and Microprogramming, 25,
1989, pp. 213-219.

Shiva, S. G. "Computer Design & Architecture." HarperCollins, New York, NY, 1991.

Stefik, M., and Bobrow, D. "Object-Oriented Programming: Themes and Variations." The
AI Magazine, Vol 6, No. 4, Winter 1986, pp. 40-62.

Sugimoto, A., Abe, S., Kuroda, M., and Katou, S., "An Object-Oriented approach for
Interactive Microprogram Simulator." Systems and Computer in Japan, Vol. 19,
No. 1, 1988, pp. 47-57.

Tanenbaum, A. S. "Structured Computer Organization." Prentice-Hall, Englewood Cliffs,
NJ, 1984.

The Gunakara Sun Systems "Prograph Reference Manual." The Gunakara Sun Systems,
Ltd., Halifax, Nova Scotia (Canada), July 1990.

195



Tomek, I., "Simulation of Computer Architecture." Mini and Microcomputers and their
Applications. Proceedings of the ISMM International Symposium, pp. 493-495,
June 1985 pp. 493-495.

Wegner, P. "Dimensions of Object-Based Language Design." Special Issue of SIGPLAN
Notices; Vol 22, No. 12, Dec 1987 pp. 168-182.

196



INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. LT Kevin A. Fontes 2
4811 S. Hunt Road
Gustine, CA 95322

4. MAT Michael L Nelson, Code CS/Ne 5
Naval Postgraduate School
Monterey, CA 93943-5100

5. Amr Zaky, Code CS/Za
Naval Postgraduate School
Monterey, CA 93943-5100

6. Robert B. McGhee, Code CS
Naval Postgraduate School
Monterey, CA 93943-5 100

7. CDR Thomas J. Hoskins, Code 37
Naval Postgraduate School
Monterey, CA 93943-5 100

8. Lou Stevens, Code CS/St
Naval Postgraduate School
Monterey, CA 93943-5100

197


